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Abstract
POMDPs capture a broad class of decision mak-
ing problems, but hardness results suggest that
learning is intractable even in simple settings due
to the inherent partial observability. However, in
many realistic problems, more information is ei-
ther revealed or can be computed during some
point of the learning process. Motivated by di-
verse applications ranging from robotics to data
center scheduling, we formulate a Hindsight Ob-
servable Markov Decision Process (HOMDP) as
a POMDP where the latent states are revealed
to the learner in hindsight and only during train-
ing. We introduce new algorithms for the tabular
and function approximation settings that are prov-
ably sample-efficient with hindsight observability,
even in POMDPs that would otherwise be statisti-
cally intractable. We give a lower bound showing
that the tabular algorithm is optimal in its depen-
dence on latent state and observation cardinalities.

1. Introduction
Sequential decision making settings where the learning
agent only receives incomplete observations of its envi-
ronmental state are typical in diverse practical scenarios,
such as control of physical systems (Thrun, 2000), dialogue
and recommendation systems (Young et al., 2013; Shani
et al., 2005), and decision making in educational or clin-
ical settings (Ayer et al., 2012). Typically studied within
the framework of a Partially Observable Markov Decision
Process (POMDP), classical literature on such problems
provides hardness results on sample and computationally
efficient learning, even in simple settings with small action,
observation and state spaces, in stark contrast to the MDP
setting where the state is fully observable. Fueled by this
gap, there is a body of literature that characterizes observ-
ability conditions when the sequence of observations reveals
enough information about the latent states to permit sample-
efficient learning. In this paper, we ask if the motivating
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practical applications sometimes allow a more informative
sensing of the underlying state for some part of the learn-
ing process. We formulate a novel learning setting called a
Hindsight Observable Markov Decision Process (HOMDP),
and provide learning algorithms that are significantly more
sample-efficient than those for general POMDPs.

For motivation, let us consider robotic control, where we
want our robot to sense its state using a relatively cheap
camera sensor upon deployment. However, during training,
it is common to allow a more expensive sensing of the state,
using simulators, higher-fidelity cameras, lidars, or even full-
fledged motion capture setups (Pinto et al., 2017; Pan et al.,
2017; Chen et al., 2020). In a completely different style of
scenarios, Sinclair et al. (2022) discuss problems such as
scheduling in a data center, where the unknown lifetime of
a job creates partial observability of the state when the job
is scheduled. This partial observability is resolved when the
job actually concludes. While the two examples are very dif-
ferent, they share a similarity. The learner needs a decision
making policy to act based on partial observations alone,
due either to resource/sensor constraints upon deployment
or to fundamental lack of information at the time of deci-
sion. However, the underlying state eventually gets revealed,
either intrinsically, or due to extrinsic measurements during
the training process. We refer to this eventual observation
of the latent environment state as hindsight observability,
and study learning settings where the learner acts based on
partial state observations, but observes the true latent states
eventually upon the conclusion of the trajectory.

We start by noting that learning in a HOMDP remains con-
siderably challenging in comparison with MDPs, as the
learner’s policy needs to depend on observations during de-
ployment (e.g. robotics, scheduling) and sometimes even
during training (e.g. scheduling). Hence we cannot use
MDP learning techniques directly. At the same time, the
HOMDP model eliminates the identifiability or observabil-
ity conditions that are crucial to success in POMDP learning,
since the hindsight observation of the latent state allows us
to associate latent states and corresponding observations,
albeit with a delay. This makes the HOMDP an intermediate
step between the complexity of MDPs and POMDPs, which
is practically prevalent as our earlier examples suggest.
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Our contributions In addition to formalizing the
HOMDP framework, and showing its broad applicability
across diverse settings, such as sim-to-real robotics, high-
frequency control, meta-learning and scheduling problems
in Appendix A, we make the following key contributions:

1. When the latent states and observations are both fi-
nite, we provide an algorithm HOP-B, which finds an
ε-optimal policy using at most Õ

(
XYH5+XAH4

ε2

)
tra-

jectories, where the HOMDP contains X latent states, Y
observations, A actions, and the horizon is H . In con-
trast with standard POMDP learning results, there is no
observability-related parameter in our bound.

2. We show an Ω(XYε2 ) lower bound, meaning that HOP-B
scales optimally with latent states and observations.

3. We develop a general algorithm, HOP-V, which allows
function approximation for both latent states and obser-
vations, and allows representation learning in the latent
state space. The sample complexity of HOP-V depends
on the statistical complexity of function classes used to
learn latent state transitions and emissions, along with a
rank parameter of the latent state transitions. Again, there
are no observability conditions in contrast with standard
POMDP results.

2. Related Work
There has been significant progress in understanding the
sample efficiency of reinforcement learning in the fully ob-
servable setting of MDPs. For tabular MDPs (finite states
and actions), upper and lower bounds for sample complex-
ity and regret are well known (Auer et al., 2008; Dann &
Brunskill, 2015; Osband & Van Roy, 2016; Azar et al.,
2017; Dann et al., 2019; Zanette & Brunskill, 2019). Sim-
ilar results have been established for MDPs that satisfy
certain structural conditions, enabling function approxima-
tion (Jiang et al., 2017; Sun et al., 2019; Jin et al., 2020b;
Agarwal et al., 2020; Du et al., 2021; Jin et al., 2021a; Foster
et al., 2021; Agarwal & Zhang, 2022).

Relative to MDPs, the sample complexity of reinforce-
ment learning in POMDPs is less understood. Classical
hardness results suggest learning in POMDPs can be both
computationally and statistical intractable even for simple
settings (Krishnamurthy et al., 2016). This hardness has
spurred researchers to identify conditions under which sam-
ple efficient learning is still possible in POMDPs. Block
MDPs (Krishnamurthy et al., 2016; Du et al., 2019) and
decodable MDPs (Efroni et al., 2022) are special classes of
POMDPs in which the current observation (or last few obser-
vations) can exactly decode the current latent state. Several
works study more general observability conditions beyond
decodability (Azizzadenesheli et al., 2016; Guo et al., 2016;
Jin et al., 2020a; Golowich et al., 2022; Liu et al., 2022a;b;

Uehara et al., 2022; Chen et al., 2022). Sample complexity
bounds under these conditions often depend crucially on pa-
rameters that quantify the degree of observability. Liu et al.
(2022b); Zhan et al. (2022); Zhong et al. (2022) provide sim-
ilar conditions for general predictive state representations
(PSRs). Although aimed at the same objective of learning
policies for partially observable settings, our work uses hind-
sight observability to circumvent any additional parameters
or assumptions on the emission function.

Empirically, a number of works successfully leverage latent
state information during training to improve sample effi-
ciency. Pinto et al. (2017); Baisero & Amato (2021) study
asymmetric actor-critic algorithms where the critic uses the
latent state while the actor uses observations, allowing the
learned policy to later interact with only observations. Pan
et al. (2017); Chen et al. (2020); Warrington et al. (2021)
use distillation-based approaches where they train an ex-
pert policy on latent states and then later imitate it with an
observation-based policy. Similar settings also appear as
privileged information (Kamienny et al., 2020) or resource-
constrained RL (Regatti et al., 2021). However, these prior
works do not address sample complexity and exploration.

Motivated by resource allocation, Sinclair et al. (2022) study
a similar hindsight problem, where the unobserved part of
the latent state is not affected by the learner’s actions, and
dynamics are fully known in hindsight. Hence, they study a
planning problem in hindsight with no need for exploration,
unlike the general HOMDP setting considered here.

Kwon et al. (2021); Zhou et al. (2022) study a latent MDP
model, where the latent state contains an additional identi-
fier of the active MDP for each episode, and the identifier
is revealed in hindsight during training. Our setting is sig-
nificantly more general, but shares similar motivation. We
compare our bounds in Section 4.

3. Hindsight Observable Markov Decision
Process

The underlying model of the HOMDP setting is the same
as a POMDP; the difference lies in what information is
revealed to the learner and when. We first review the rele-
vant quantities of a POMDP and subsequently introduce the
hindsight observability and learning protocol in a HOMDP.

3.1. Preliminaries

For n ∈ N, we use [n] to denote the set {1, 2, . . . , n}. For a
set S, ∆(S) denotes the set of (appropriately defined) densi-
ties over S. For h ∈ N, we use a1:h to denote (a1, . . . , ah).

We consider an episodic partially observable Markov de-
cision process (POMDP) M with episode length H , la-
tent state space X , observation space Y , and action space
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A. When these are finite, we denote their respective car-
dinalities as X := |X |, Y := |Y|, and A := |A|. An
initial latent state x1 is sampled from a fixed and known
initial state distribution ρ ∈ ∆(X ). The process evolves
according to transition function T? : X × A → ∆(X ),
acting on the latent states. When the learner visits a la-
tent state x, the environment generates an observation
y ∈ Y according to the conditional emission function
O? : X → ∆(Y). In particular, in each episode, a (la-
tent) trajectory τ̄ = (x1, y1, a1, . . . , xH , yH , aH , xH+1)
is generated where x1 ∼ ρ(·), xh+1 ∼ T?(·|xh, ah),
yh ∼ O?(·|xh), and the learner selects a1:H . We include
xH+1 (from taking aH in xH ) as a latent variable for con-
venience. When referring to an (observed) trajectory of just
observations and actions, we use τ = (y1, a1, . . . , yH , aH).
We assume there is a known deterministic reward function
r : X ×A → [0, 1]. Our results can be generalized readily
to stochastic, observation-dependent rewards.

As is standard in POMDPs, we consider the setting where
the learner interacts with the environment by specifying a
history-dependent policy π : (Y×A)∗×Y → ∆(A) which
takes as input a (variable) h-length history of observations
y1:h and (h−1)-length history of actions a1:h−1 and outputs
a distribution over actions. That is, the learner’s policy does
not get to observe any of the latent states x1:H+1 during
execution of π. For conciseness, we denote the partial histo-
ries as τh := (y1:h, a1:h−1) and τ̄h := (y1:h, x1:h, a1:h−1),
which includes the observation yh and latent state xh (if
applicable) at step h.

For a policy π, we denote the expected cumulative reward
over an episode by

v(π) = Eπ

 ∑
h∈[H]

r(xh, ah)

 , (1)

where Eπ is the expectation taken over trajectories in the
POMDP under policy π.

3.2. Hindsight observability

Now we formally introduce the HOMDP setting and de-
scribe the interaction protocol, i.e., how the learner interacts
with the environment and receives information. We also
illustrate this description in the accompanying Figure 1.
Along the way, we highlight differences with the standard
POMDP and MDP settings. There are two phases in the
HOMDP: train time and test time.

During train time, the learner interacts with the environ-
ment over K ∈ N rounds (episodes). At any given round
k ∈ [K], the learner produces a history-dependent policy
π̂k which is deployed in the partially observable environ-
ment as if the learner is interacting with a standard POMDP.
During execution of the episode k at time h ∈ [H], the

̂π( ⋅ |τh)
yh

ah

Record observations

y1y2yh
ahahah

Deploy policy

̂π

y1y2xh

Observe latent states

Update policy

Figure 1: A HOMDP model at train time. The learned history-dependent policy π̂ is
deployed and takes actions a1:H using only observations y1:H . After deployment,
the environment reveals the latent states x1:H+1. The policy updates with both the
latent states x1:H+1 and observations (y1:H , a1:H). At test time, only a history-
dependent policy is deployed.

environment reveals only the current observation yh to the
learner. The policy can thus base its decision ah on only
the partial history τh = (y1:h, a1:h−1) of interactions in
that episode. Once the kth episode is completed, the latent
states x1:H+1 are revealed to the learner in hindsight, hence
the terminology hindsight observability. The learner can
then generate a new policy π̂k+1 using information from
(x1:H+1, y1:H , a1:H) as well as that of all previous episodes.
This is the key difference between HOMDPs and standard
POMDPs where the latent states are never revealed and the
learner generates the policy from only previous observa-
tions, actions, and rewards alone. In MDPs, on the other
hand, the latent state is observed instantaneously and the
policy can directly map a latent state to an action.

The train time phase may be followed by a test time phase
where a single history-dependent policy π̂ is deployed but
the learner does not observe latent states or update the policy
after committing to π̂. To determine π̂, the learner can use
all of the information collected over the K episodes at train
time, including the latent states observed in hindsight. The
quantity v(π̂) evaluates the quality of π̂. We let π? denote
the optimal observation-based policy maximizing v(π?) and
measure the sub-optimality of the learner’s policy π̂ by the
difference v(π?)− v(π̂). Again, in contrast with an MDP, a
HOMDP never reveals the latent state at test time.

We are primarily concerned with PAC sample complexity
bounds controlling the suboptimality of π̂, but some algo-
rithms also address the regret problem at train time where
the regret for all K rounds is measured as

Reg(K) =
∑
k∈[K]

v(π?)− v(π̂k).

Example 1 (Sim-to-real robotics). In sim-to-real robotics
(Pinto et al., 2017), one trains an image-based policy in a
simulator with access to the underlying states. The goal is to
deploy the image-based policy in the real world. X is the set
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of robot and object positions and poses which are observable
in the simulator during training. Y is the set of image
observations from a camera, which is the only modality
available at test time. X and Y are both continuous and high
dimensional. A is the set of control inputs the robot can take
such as joint torques. Note that the latent states are available
without delay at train time in this example. However, we
later show that this variant of the problem interestingly does
not yield significant statistical advantage in theory because
the desired policy at test time is still history-dependent (see
the discussion following Theorem 5.1). Empirically, history-
dependent policies are still preferred to state-based policies
even during train time despite access to the state to facilitate
better sim-to-real transfer.
Example 2 (Data center scheduling). In data center
scheduling (Sinclair et al., 2022), described in the introduc-
tion, Y is the observable state of the submitted, processing,
and completed jobs as well as their allocations to servers,
which is available at the time of decision-making. X is
a concatenation of Y with lifetime lengths of the submit-
ted/processing jobs and the arrival times of future jobs. This
information is available, but only in hindsight. Depending
on the setup, X and Y can be relatively succinct here. A is
the set of allocation actions for currently submitted jobs.

3.3. Comparison with hardness of learning in POMDPs

Both POMDPs and HOMDPs share the use of history-
dependent policies during execution at test time. However,
a POMDP never reveals the association between observa-
tions and latent states, leading to a lack of identifiability
and exponential in H lower bounds even for simple ones
(Krishnamurthy et al., 2016). As discussed previously, nu-
merous recent papers (Liu et al., 2022a; Jin et al., 2020a;
Cai et al., 2022; Liu et al., 2022b; Zhan et al., 2022) investi-
gate observability conditions under which sample-efficient
learning is possible by ensuring O? reveals enough about
the distribution of possible latent states. This yields sample
complexity bounds that incur an unavoidable dependence
on the minimum singular value of O? (Liu et al., 2022a), or
related parameters.

However, settings where such observability conditions are
satisfied may still preclude many practically interesting par-
tially observable problems. Our objective in this paper
is to understand to what extent the addition of hindsight
observability in a HOMDP can make learning in partially
observable settings sample-efficient without relying on ob-
servability parameters.

4. Learning in Finite HOMDPs
We now turn to the design of efficient algorithms for learn-
ing in the HOMDP model. We begin with the setting where
the latent state space X and observation space Y have finite

cardinalities X := |X | and Y := |Y|. We introduce a new
algorithm, HOP-B, which naturally extends minimax opti-
mal results (in X and A) for tabular MDPs to the HOMDP
model. Our proposed algorithm is model-based, leveraging
the intuition that, provided with the latent states x1:H+1,
one should be able to estimate the transition and emission
functions, T? and O?. We start with the algorithm, before
presenting the sample complexity guarantee.

4.1. The HOP-B algorithm

Our algorithm, Hindsight OPtimism with Bonus (HOP-B)
estimates the transition and emission models, and subse-
quently finds an optimal policy in this learned model using a
reward bonus to encourage exploration. The design of bonus
is a key novelty in HOP-B, relative to its MDP counterparts,
as we will discuss shortly.

Before describing the algorithm, we define a planning oracle
which is used in the algorithm to compute the exploration
policies. Note that planning in a HOMDP is identical to a
POMDP, as we seek an optimal history-dependent policy.

Definition 4.1 (Optimal planner). The POMDP planner
POP takes as input a transition function T , an emission
functionO, and a reward function r and returns a policy π =
POP(T,O, r) such that v(π) = maxπ′ vM(T,O,r)(π

′),
whereM(T,O, r) denotes the POMDP model with latent
transitions T , emissions O, and reward function r.

While it is known that planning in POMDPs is PSPACE-
hard in general (Papadimitriou & Tsitsiklis, 1987), there
are many special classes of POMDPs for which planning
is computationally efficient. Alternatively, it is possible in
practice to use one of many existing approximate POMDP
planners; however, this will likely weaken the subsequent
theoretical guarantees of this section up to some approxima-
tion error. Regardless, this is much milder computational
assumption than what is sometimes made in comparable
POMDP literature (Jin et al., 2020a).

HOP-B operates over K rounds, starting with arbitrary
guesses T̂1 and Ô1 of the model. At round k, it computes
reward bonuses based on the uncertainty in the estimates
T̂k and Ôk, which is quantified by the number of visits to
each latent state x and latent-state action pair (x, a) from
the dataset. We define these bonuses in εk(x) and εk(x, a)
in lines 7 and 8 with parameters given in line 4. Note that
the εk(x) bonus is in addition to the typical bonus in MDPs.
Informally εk(x, a) captures our uncertainty in the estima-
tion of T?, while εk(x) measures it for O?. For instance,
even if we know T?, we need to visit each latent state to
estimate its emission process for the subsequent planning,
capturing the need for the additional εk(x) bonus.

We construct a reward function r̂k by adding the bonuses
to r. We then invoke the planner POP using T̂k, Ôk, and
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Algorithm 1 Hindsight OPtimism with Bonus (HOP-B)

1: Input: POMDP planner POP.
2: Initialize emission and transition models Ô1, T̂1.
3: Initialize n1(x) = n1(x, a) = 0 for all x ∈ X , a ∈ A.
4: Set bonus parameters
β1 = 4H3 log(Y XAHK/δ), β2 = 8Y log(Y XKH/δ).

5: for k = 1, . . . ,K do
6: // Set reward bonuses

7: εk(x, a) = min
{√

β1

nk(x,a) , 2H
}

8: εk(x) = min
{√

β2

nk(x) , 2
}

9: r̂k(x, a) = r(x, a) +Hεk(x) + εk(x, a)
10: // Plan, deploy hist.-dependent policy
11: π̂k = POP(T̂k, Ôk, r̂k)
12: Run π̂k and observe trajectory τk = (yk1:H , a

k
1:H).

13: // Hindsight observation
14: Observe latent states xk1:H+1 = (xk1 , . . . , x

k
H+1).

15: // Update models
16: nk+1(x) =

∑
`∈[k],h∈[H] 1{x`h = x}.

17: nk+1(x, a) =
∑
`∈[k],h∈[H] 1{x`h = x ∧ a`h = a}.

18: Update T̂k+1 via (2)
19: Update Ôk+1 via (3)
20: end for

the reward function r̂k to generate an optimistic history-
dependent policy π̂k. As we show in the proof, the esti-
mated value of π̂k under the current model over-estimates
the true value of π? with high probability. We then deploy
the optimistic policy π̂k in the environment to generate a
trajectory of observations y1:H and actions a1:H . We further
observe the latent states x1:H+1 in hindsight. Finally, using
the new information from the trajectory and in hindsight,
we update the models with empirical estimates using all the
past data:

T̂k+1(x′|x, a) =
∑

`∈[k],h∈[H]

1
{
x`h = x, y`h = y, x`h+1 = x′

}
nk+1(x, a)

(2)

Ôk+1(y|x) =
∑

`∈[k],h∈[H]

1
{
x`h = x, y`h = y

}
nk+1(x)

(3)

for all x, x′, a, y where nk+1(x, a) and nk+1(x) are defined
in Algorithm 1. Note that both the calculation of the un-
certainty bonuses and the model updates are possible only
due to the hindsight observability that reveals the latent
states x`1:H+1 for ` ∈ [k − 1]. In general POMDPs, such
calculations are not available.

4.2. Regret and sample complexity bounds

We now present the main guarantees for HOP-B in
HOMDPs. While we are primarily concerned with sample
complexity bounds, HOP-B readily admits a regret bound.

Theorem 4.2. LetM be a HOMDP model with X latent
states and Y observations. With probability at least 1− δ,
HOP-B outputs a sequence of policies π̂1, . . . , π̂K such that

Reg(K) = Õ
(√

(XYH5 +XAH4)Kι
)
,

where ι = log(2X2Y AKHδ−1) and Õ omits lower-order
terms in K.

The full bound, including lower order terms, and the proof
can be found in Appendix C. A standard online-to-batch
conversion reveals that HOP-B learns an ε-optimal policy
at test time with probability at least 1 − δ with sample
complexity

K = Õ
(
XYH5 +XAH4

ε2

)
,

omitting log factors and lower-order terms in ε. We highlight
several conceptual implications of the results.

• The bounds do not have dependence on any observabil-
ity parameter, which typically measures the degree to
which one can decode the latent distribution from obser-
vations in POMDPs. For instance, guarantees of Liu et al.
(2022a) depend polynomially on the inverse of the min-
imum singular value of O? and in fact this dependence
is necessary in general POMDPs (see e.g. Theorem 6
in Liu et al., 2022a). This precludes efficient learning
in a wide class of partially observed problems (such as
vision-based robotics applications with occlusions). By
leveraging hindsight observability, our results show that it
is possible to circumvent this hardness while still learning
a near optimal history-dependent policy for test time.

• The leading terms depend linearly on the number of ob-
servations Y and latent states X . Inspecting just the
dependence in X and A, the result of Theorem 4.2 can
thus be viewed as a natural extension of minimax regret
(and sample complexity) results for the MDPs. This is
known to be unimprovable in general even for full in-
formation MDPs (Dann & Brunskill, 2015; Osband &
Van Roy, 2016). However, due to the added complexity
of partial observability during deployment, a linear term
in Y is also present our bound. Our lower bound in Theo-
rem 5.1 shows that the linearXY dependence is minimax
optimal. We remark prior work on POMDPs has yielded
large polynomial dependence on X and Y in contrast to
our linear dependence here.

• An interesting observation of HOP-B is that the explo-
ration bonus need only happen at the latent state level,
rather than needing to explore histories. This suggests
that little structure might be needed to learn O?.1 We

1Indeed, we show in Appendix C.6 that we can incorporate
function approximation of O? without additional structural condi-
tions beyond realizability as long as the latent model is tabular.
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x2
ix1

i y ∼ O⋆y ∼ O⋆

a2 a2a1a1

+0+1 +0 +1

xi

Figure 2: Simplified case of the lower bound construction. The learner starts in xi

and randomly transitions to x1
i or x2

i . The optimal action to achieve reward +1 is
different depending on which latent state is visited, but the observation y obfuscates
sensing of the latent state.

will see in Section 6 that this observation becomes deeper
when incorporating function approximation.

The dependence on the horizon H , although still polyno-
mial, is likely suboptimal; however, we conjecture that it can
be improved using known tools for MDPs. Since our focus
is on the impact of X and Y and understanding the funda-
mental efficiency gaps between HOMDPs and POMDPs,
we leave optimizing these additional factors for future work.
As discussed before, HOMDPs are a generalization of latent
MDPs with identifiers labeled in hindsight studied by Kwon
et al. (2021); Zhou et al. (2022). Ignoring H and specializ-
ing our bound to their setting, it matches Kwon et al. (2021).
Zhou et al. (2022) is better by a sparsity factor, but is more
specialized and not applicable to general HOMDPs.

Proof intuition. HOP-B resembles typical optimistic al-
gorithms for MDPs. However, a naı̈ve analysis by comput-
ing confidence intervals on T̂k−T? and Ôk−O? results in an
O(X2) scaling of sample complexity. We follow the MDP
literature in constructing more careful confidence bounds
on appropriate value functions instead. This requires some
care as value functions are history-dependent in a HOMDP.
In particular, we need to control the required exploration as
a function of latent state visitations, while reasoning over
history-dependent value functions. Combining these ideas
carefully, which we present in detail in Appendix C, gives
the proof of Theorem 4.2. We note that most POMDP anal-
yses do suffer from the O(X2) or worse scaling, as they do
not reason via value functions.

5. Limits of Learning in Tabular HOMDPs
We now show that the upper bound of the previous section
is optimal in XY for the tabular setting. We present a new
information-theoretic lower bound for the tabular HOMDP
setting. The proof is in Appendix D.

Theorem 5.1. Fix ε ≤ 1/64 and X,Y ∈ N such that Y ≥
6, (X + 1) ≥ 128 log 2. For any algorithm A producing a

policy π̂ inK episodes of interaction, there exists a HOMDP
with the aforementioned cardinalities and H � log2(X)
and A = 2 such that A needs

K = Ω
(
XY/ε2

)
to guarantee E [v(π?)− v(π̂)] ≤ ε, where the expectation
is taken over randomness in the data and algorithm.

The lower bound is information-theoretic, meaning that
no algorithm can do better than this. The lower bound of
Theorem 5.1 matches the XY leading term of the upper
bound in Theorem 4.2, suggesting that our algorithm is
minimax optimal in X and Y for large K. Recall that
existing lower bounds for learning in MDPs necessitate
Ω (XA/ε2) episodes of interaction, which accounts for the
other leading term in our upper bound (Dann & Brunskill,
2015; Osband & Van Roy, 2016). Since POMDPs are more
general than HOMDPs, our lower bound also applies to
POMDPs.

Hindsight vs. foresight observability. Our lower bound
construction does not distinguish between the latent state
xh being simultaneously revealed along with yh, or only in
hindsight. The key bottleneck is in the construction of the
history-dependent policy at test time. Therefore, revealing
states simultaneously is no easier statistically than revealing
them in hindsight, at least in a minimax sense. This lends
credence to framing a broader class of problems such as sim-
to-real robotics as HOMDPs by dealing with latent states
after execution of a policy even though the state is always
observable during training. Because one seeks a history-
dependent policy in the end, it is just as hard statistically.

Intuition for lower bound construction. We derive the
lower bound by constucting a class of hard HOMDP models
in the form a binary tree for the latent states, like many hard
MDP constructions. At the final layers of the tree is a collec-
tion of Ω(X) subproblems, each of the form of Figure 2. In
each subproblem there are 3 latent states. The learner starts
in xi and transitions randomly to either of the child states
x1
i and x2

i with equal probability and must take an optimal
action that depends on which one it visits. The difficulty is
that O? is biased slightly towards half of the observations
depending on the latent state. As a result, in order to ef-
fectively match the value of the optimal policy, the learner
must interact at least Ω(Y ) times with this subproblem. To
prove there is linear dependence on XY , we leverage the
binary tree described earlier. In short, the learner transitions
randomly down the tree until it reaches one of Ω(X) in-
dependent subproblems (decodable from the observations),
where it must play optimally. As we remarked earlier, the
bottleneck is on the history-dependent policy deployed at
test-time, so observing the latent states simultaneously at
training does not help in solving this construction.
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6. Generalization in HOMDPs
While the tabular setting considered so far is important for
building intuition, and tabular latent states are particularly
reasonable in many settings, several practical domains of
interest necessitate continuous and high-dimensional latent
states and observations. In this section, we study HOMDPs
where both X and Y can be infinitely large, and we employ
function approximation for sample-efficient learning. Mir-
roring prior work in MDPs and more recently POMDPs,
this requires structural conditions on the underlying latent
state transitions T?. We now describe one such condition
which has been widely studied in the MDP literature, and
present an algorithm and sample complexity guarantees.

6.1. Low-rank latent transition dynamics

We initiate this investigation with a well-studied model in
the MDP literature: the low-rank MDP (Barreto et al., 2011;
Jiang et al., 2017; Agarwal et al., 2020). We study HOMDPs
where the underlying latent state MDP is low-rank.
Definition 6.1. A transition function T? admits a low-rank
decomposition with rank d if there exist vector functions
φ? : X ×A → Rd and ψ? : X → Rd such that

T?(x
′|x, a) = φ?(x, a)>ψ?(x

′) ∀x, x′ ∈ X , a ∈ A

Furthermore, φ? satisfies supx,a ‖φ?(x, a)‖2 ≤ 1 and ψ?
satisfies ‖

∫
x′
ψ?(x

′) dx′‖2 ≤
√
d.

Note that in the low-rank setting, we do not assume that
the feature embedding φ? is known, unlike the linear MDP
setting (Jin et al., 2020b) which crucially leverages this
knowledge. We defer details, motivations, and comparisons
to the original papers on the matter (Agarwal et al., 2020).

We assume that the learner has access to function classes T
and Θ for approximation of T? and O?, respectively. For
simplicity of the analysis, we assume that they are finite
but large, and thus we desire a sample complexity which is
logarithmic in |T | and |Θ|, with no explicit dependence on
|X | or |Y|. This formulation also automatically captures the
representation learning problem for the latent states (Agar-
wal et al., 2020). As is standard, we assume that the function
classes are proper and satisfy realizability.
Assumption 6.2. T? ∈ T and O? ∈ Θ. Furthermore, for
all T ∈ T and O ∈ Θ, T (·|x, a) ∈ ∆(X ) and O(·|x, a) ∈
∆(Y) for all x, x′ ∈ X and a ∈ A.

The above requires that all candidates in the class can form
valid distributions (i.e., they are proper); this can be satisfied
by simply discarding those in T and Θ that are improper.

6.2. The HOP-V algorithm

We now introduce the algorithm Hindsight OPtimism with
Version spaces (HOP-V) for function approximation in

Algorithm 2Hindsight OPtimism with Version spaces(HOP-V)

1: Input: Transition class T , Emission class Θ.
2: Set K ′ = bK/Hc.
3: Set βT = 2 log (K ′|T |/δ).
4: Set βΘ = 2 log (K ′|Θ|/δ).
5: Initialize T1 = T . and Θ1 = Θ.
6: for k = 1, . . . ,K ′ do
7: // Optimistic planning
8: Solve

π̂k, Ôk, T̂k = arg max
π∈Π,T∈Tk,O∈Θk

vM(T,O)(π)

9: for h ∈ [H] do
10: // Deploy hist.-dependent policy
11: Construct exploration policy π̃k = π̂k ◦h Unif(A)
12: Deploy π̃k and observe trajectory (y1:H , a1:H).

// Hindsight observation
13: Observe latent states x1:H+1.
14: Set ykh := yh, akh := ah, xkh := xh, x̃kh := xh+1.
15: end for
16: Update version spaces with

Tk+1 =

{
T ∈ Tk : L̂1

k(T ) ≥ max
T ′∈Tk

L̂1
k(T ′)− βT

}
Θk+1 =

{
O ∈ Θk : L̂2

k(O) ≥ max
O′∈Θk

L̂2
k(O′)− βΘ

}
17: end for

HOMDP models. HOP-V divides the K rounds into
K ′ = bK/Hc epochs and maintains version spaces Tk
and Θk over the model classes based on the data collected
so far for each epoch k ∈ [K ′]. In epoch k, HOP-V iden-
tifies a policy π̂k and models T̂k and Ôk by solving an
optimistic optimization problem over the version spaces.
Here vM(T,O)(π) denotes the value of a policy π in the
POMDP model given by transition function T , emission
function O and the true reward function r, akin to the origi-
nal definition in (1). Still within epoch k, for each h ∈ [H],
HOP-V generates an exploration policy from π̂k by taking
π̃k = π̂k ◦h Unif(A). The operator ◦h replaces π̂(·|τh)
with the uniform distribution Unif(A) ∈ ∆(A) over the
actions for all h-length histories τh, but leaves the rest of π̂k
unaffected. That is, π̃k plays π̂k normally up to the hth step
and then takes a random action.

HOP-V deploys the exploration policy π̃k in the environ-
ment and records the observation ykh and action akh. Then,
when the latent states are revealed, it records the latent
state xkh and the next state x̃kh. It repeats this exploration
procedure for each h ∈ [H] in the epoch k to generate
(yk1:H , a

k
1:H , x

k
1:H , x̃

k
1:H). Based on this new data, it up-

dates the version spaces via maximum likelihood estimation
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(MLE) with the following log-likelihood objectives:

L̂1
k(T ) =

∑
`∈[k],h∈[H]

log T (x̃`h|x`h, a`h) and

L̂2
k(O) =

∑
`∈[k],h∈[H]

logO(y`h|x`h).

6.3. Sample complexity bound

We now state the performance guarantee for HOP-V.

Theorem 6.3. Let M be a HOMDP model with a low-
rank transition function T? of rank d. Let T and Θ satisfy
Assumption 6.2. Then, with probability at least 1−δ, HOP-V
outputs a sequence of policies π̂1, . . . , π̂K′ such that

Reg(K ′) = O

(√
AH4dK ′ log

(
K ′H|Θ||T |

δ

)
logK ′

)

Note that the regret is over the learned π̂1:K′ , not the actu-
ally deployed exploration policies. This phenomenon occurs
often from one-step exploration (Jiang et al., 2017; Agarwal
et al., 2020). However, our focus is the implied PAC guaran-
tee. Again, using a standard online to batch conversion, we
get that HOP-V learns an ε-optimal policy with probability
at least 1− δ in

K = Õ
(
AH5d

ε2
log

(
|Θ||T |
δ

))
episodes of interaction. The additional H arises because
there are H episodes for each epoch k ∈ [K ′] due to the
construction and deployment of the exploration policies.

• In contrast to the tabular bound of HOP-B, HOP-V has
no dependence on the size of the latent state space X
or observation space Y . Instead, generalization using
function classes replaces them with complexities of T and
Θ and the rank d of the latent transition. Note that we can
readily replace these log-cardinalities with other suitable
notions of complexity for infinite function classes.

• For comparison to Theorem 4.2, we can set d = X ,
log |Θ| = Õ(XY ) and log |T | = Õ(X2A), which re-
sults in a suboptimal scaling in X as HOP-V does not use
value function-based optimism unlike HOP-B.
• Similar to the tabular setting, the sample complexity also

has no dependence on observability parameters, showing
that we maintain this advantageous property of HOMDP
models in the function approximation setting.

• Observe that we have not made any further structural
conditions on O? to achieve this result. The structural
condition is only on T?.

Proof intuition. The proof is remarkably simple in con-
trast to the tabular result. It is a combination of just two

components. The first is a simulation lemma (Lemma E.1),
which relates the estimation error of the estimated value
function to the total variation error of both T̂k and Ôk. This
decomposition allows us the analyze the error almost en-
tirely in terms of the latent state distributions of the explo-
ration policies, rather than their histories. This leads to
the second component, which is a standard “one-step-back”
analysis that has previously appeared for low-rank MDPs in
the fully observable setting (Agarwal et al., 2020). The use
of uniform exploration policies at each h is also common
in MDP literature to handle the distribution shift between
current and historical data. Here the randomness also plays
a secondary role of removing all history dependence.

7. Discussion
Motivated by practical applications in partially observable
problems, we formulated the problem setting of a Hindsight
Observable Markov Decision Process (HOMDP), where the
objective is to learn a decision making policy based on par-
tial observations in order to interact with the environment,
but the underlying latent states are eventually revealed dur-
ing the training process. We proposed an algorithm, HOP-B,
for finite latent states and observations. We gave sample-
complexity upper and lower bounds, showing that HOP-B
has no dependence on partial observability parameters and
that it is nearly optimal in dependence on XY . We also
proposed an algorithm, HOP-V, that allows for function
approximation of the transition and emission functions to
handle generalization in large or infinite latent state and
observation spaces.

There are a number of interesting open directions for future
work on hindsight observability. The similarities and com-
patibility between the HOMDP and standard MDP mod-
els make HOMDPs a ripe area for further advancements
that leverage our deeper knowledge of MDPs. Natural di-
rections include, for example, model-free RL (Jin et al.,
2018; 2020b), offline RL (Xie et al., 2021; Jin et al., 2021b;
Zanette et al., 2021), model selection (Lee et al., 2021; 2022;
Cutkosky et al., 2021), and computationally efficient repre-
sentation learning for latent states (Agarwal et al., 2020).

Specific to function approximation, our most general results
applied to low-rank latent transition functions for general-
ization and representation learning; however, MDP liter-
ature has had success with more general conditions that
restrict the form of the latent state Bellman error (Jiang
et al., 2017; Sun et al., 2019; Du et al., 2021; Agarwal &
Zhang, 2022). Unfortunately, these conditions have little
meaning in HOMDPs and POMDPs because partially ob-
servable value functions are history-dependent, not latent
state-dependent. It would be interesting in the future to
either reconcile these types of conditions or develop new
meaningful ones for HOMDPs.
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Image sources: The globe in Figure 1 is taken from https://commons.wikimedia.org/wiki/File:Ambox globe Americas.
svg.

A. Additional Motivating Applications
To further establish hindsight observability, we describe in more detail a number of motivating applications. The diversity of
the problem settings highlights the generality of the HOMDP model.

• Sim-to-real robotics. Sim-to-real (simulation to reality) is a well-studied paradigm in robotics in which one trains a
robot using RL in a simulator with the end goal of deploying the robot in the real world at test time. The test time policy
often uses high dimensional, partial observations such as images from a camera (which are susceptible to noise and
occlusions). However, during training, the simulator grants access to the underlying state (object positions, poses, etc.),
information that is not available at test time but might dramatically increase sample efficiency. Empirically, leveraging
this train-time information has led to improved sample complexity (Pinto et al., 2017; Chen et al., 2020).

• High-frequency control. In a related control setting, latency and computational bottlenecks (e.g. processing lidar data,
depth images, etc.) can obscure and delay observation of the true state even though control inputs must be made quickly.
It is common in such settings to instead use simpler observations, such as images from a standard camera. Once the
system finally observes or processes the true states, the states can be incorporated in the training procedure. Pan et al.
(2017) explored this direction, successfully training an autonomous rally car via distillation for high-speed driving.

• Meta-learning and latent MDPs. In meta-learning for RL (Wang et al., 2016; Finn et al., 2017), an agent leverages
past rollouts on different MDP tasks sampled from a fixed distribution, where the reward and transition functions differ
from task to task. The training tasks are often labeled or can be inferred in hindsight (Liu et al., 2021). At test time,
the task is unknown and thus the agent must adapt using only observations to infer and maximize reward for the test
time task. This can be modeled as a HOMDP, where the latent states are the MDP states concatenated with the task
context and the observations are the MDP states. Meta-learning with finitely many tasks can also be viewed as a latent
MDP (Kwon et al., 2021; Zhou et al., 2022).

• Scheduling. Following Sinclair et al. (2022), consider a data center, which aims to allocate submitted jobs to servers
efficiently. The arrival times of the jobs and their total lengths are unknown. However, once a job has completed, both
its arrival time and length are known in hindsight. The latent states of the equivalent HOMDP are the observations
concatenated with the arrival times and lengths of all jobs.

• Online imitation learning In online imitation learning (Ross et al., 2011), an agent interacts with the MDP over K
rounds, executing actions under its learned policy. After a round, it retroactively queries an expert for optimal actions in
the visited states to then update the policy. This can be viewed as a special case of our setting where each of our latent
states is a visited state concatenated with the expert’s optimal action for that state, which is only retroactively observed.

• Screening for diseases. Medical screenings are procedures designed to help detect and monitor diseases in patients,
usually in early stages. Screenings are typically dependent on patient characteristics as well as tests, which may not
always be accurate and may have undesirable effects. Ayer et al. (2012) frame the problem of screening for breast
cancer as a POMDP, where the state is a patient’s true condition (progression of the disease), and the observations are
the outcomes of tests such as a mammogram. Depending on the actions taken in response to the observed tests, the
patient may eventually undergo a perfect test revealing the latent state (such as a biopsy). Revelation of the state can
then be used to more effectively guide observation-based policies in the future by allowing association between the
outcomes of prior tests and the true condition.

B. Value Functions and Alpha Vector Representations
The proofs in this paper crucially rely on the α-vector representation of value functions for POMDPs (Smallwood & Sondik,
1973). Since these techniques and intuitions are not common in reinforcement learning theory literature2, we now give an
introductory treatment of this topic with all the tools necessary for our proofs.

2Exceptions include Kwon et al. (2021); Zhou et al. (2022) who used α-vectors in the latent MDP model (single unobserved context).

https://commons.wikimedia.org/wiki/File:Ambox_globe_Americas.svg
https://commons.wikimedia.org/wiki/File:Ambox_globe_Americas.svg


Learning in POMDPs is Sample-Efficient with Hindsight Observability

Since we work with history-dependent policies, the value V π and action-value functions Qπ of a policy π are history-
dependent as well. The history of observations and actions τh gives rise to a posterior distribution bh(·) = P (xh = ·|τh)
over the latent states.3 We could define value functions simply as a function of τh but it will be convenient to make the
posterior bn explicit and write value functions as a function of both xh and bh:

Qπh(bh, τh, ah) = Exh∼bh

[
E

[
H∑

h′=h

r(xh, ah) | τh, xh, ah

]]
V πh (bh, τh) =

∑
ah

π(ah|τh)Qπh(bh, τh, ah).

While bh determines the latent state, τh affects the actions taken by the policy.

The α-vectors of a POMDP act as a kind of representation for the value functions of possible policies on the POMDP. This
allows us to represent value functions as linear functions of belief vectors. Note that it is not obvious how to write either of
the value function V or Q for POMDPs in a concise, recursive form in the same way that we do for MDP value functions.
The α-vector representation provides an alternative solution where we can represent the value functions as linear functions
with the α-vectors and then have a recursive definition of the α-vectors.

Consider a POMDP with transtion function T and emission functionO. Consider the last timestepH and a belief distribution
b ∈ ∆(X ) over the latent state:

QπH(b, τ, a) =
∑
x

b(x)r(x, a) (4)

V πH(b, τ) =
∑
x,a

b(x)π(a|τ)r(x, a). (5)

These clearly have simple linear representations as functions of the belief vector:

QπH(b, τ, a) = b>απH,τ (·, a) (6)

V πH(b, τ) = b>απH,τ (·), (7)

where τ is a partial history of appropriate length, απH,τ (·) ∈ RX and απH,τ (·, ·) ∈ RX×A are given by

απH,τ (x, a) = r(x, a) (8)

απH,τ (x) =
∑
a

π(a|τ)απH,τ (x, a). (9)

Let us now assume inductively that V πh+1(x) and Qπh+1 have the following representations:

Qπh+1(b, τ, a) = b>απh+1,τ (·, a) (10)

V πh+1(b, τ) = b>απh+1,τ . (11)

From the definition of Q,

Qπh(b, τ, a) = b>r(·, a) +
∑
y′

P (y′|τ, a)V πh+1(b′, τ ′) (12)

where we denote τ ′ as the history τ concatenated with the new action a and observation y′ and where b′ (which is dependent
on y′ and a ) is updated belief vector starting from b given action a and the next observation y′.

b′(x′) :=
O(y′|x′)

∑
x b(x)T (x′|x, a)∑

x′′ O(y′|x′′)
∑
x b(x)T (x′′|x, a)

. (13)

3The posterior depends on the initial latent state distribution ρ but we omit a notational references to it for clarity.
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The action-value function can then be rewritten as

Qπh(b, τ, a) = b>r(·, a) +
∑
y′

P (y′|τ, a)
∑
x′

b′(x′)απh+1,τ ′(x
′) (14)

= b>r(·, a) +
∑
x,x′,y′

b(x)T (x′|x, a)O(y′|x′)απh+1,τ ′(x
′) (15)

= b>r(·, a) + b>γπh,τ (·, a), (16)

where we define

γπh,τ (x, a) =
∑
x′,y′

T (x′|x, a)O(y′|x′)απh+1,τ ′(x
′) (17)

γπh,τ (x) =
∑
a,x′,y′

πh(a|τ)T (x′|x, a)O(y′|x′)απh+1,τ ′(x
′). (18)

Then, define

απh,τ (·, a) = r(·, a) + γπh,τ (·, a) (19)

απh,τ (·) =
∑
a

πh(a|b)r(·, a) + γπh,τ (·). (20)

This enables

Qπh(b, τ, a) = b>απh,τ (·, a) (21)

V πh (b, τ) = b>απh,τ (·). (22)

We may repeat this recursion until the end h = 1.

This culminates in the following α-vector proposition.
Proposition B.1 (α-vector representation). Let π be a fixed history-dependent policy. Let bh denote the belief vector
(posterior distribution over X ) given the history τh = (y1:h, a1:h−1). Then, there exist vectors απh,τh(·) ∈ RX and
απh,τh(·, a) ∈ RX such that, for all (h, x, a, τh), the following equations hold:

V πh (bh, τh) = b>h α
π
h,τh

(·) (23)

Qπh(bh, τh) = b>h α
π
h,τh

(·, a) (24)

απh,τh(x, a) = r(x, a) +
∑
x′,y′

T (x′|x, a)O(y′|x′)απh+1,τ ′(x
′) (25)

απh,τh(x) =
∑
a

π(a|τh)απh,τh(x, a), (26)

where τ ′ is the concatenation of τ with observation y′ and action a, and αH+1 = 0. Furthermore,
max

{
απh,τh(x, a), απh,τh(x)

}
≤ G(H − h+ 1) if r(x, a) ∈ [0, G] for all x ∈ X and a ∈ A and h ∈ [H].

Proof. We have already proved the equations by induction. It remains to show that the values we constructed satisfy the
last statement, the bound. We will focus on απh,τ (x, a) since it is clear that if the bound is satisfied for this one, then it is
satisfied for απh,τ (x). Using proof by induction, we have the base case απH,τ (x, a) ≤ maxx,a r(x, a) ∈ [0, G]. Then,

απh,τ (x, a) = r(x, a) +
∑
x′,y′

T (x′|x, a)O(y′|x′)απh+1,τ ′(x
′) (27)

≤ r(x, a) +
∑
x′,y′

T (x′|x, a)O(y′|x′)G (H − (h+ 1) + 1) (28)

= r(x, a) +G(H − h) (29)
≤ G(H − h+ 1). (30)

This concludes the proof.
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C. Full Statement and Proof of Theorem 4.2
Having established the notation and important concepts of the α-vectors, we now proceed to the full statement (including all
lower order terms) and the proof of Theorem 4.2, which will immediately put these concepts to use.

C.1. Full statement of result of Theorem 4.2

We let a . b mean that a ≤ cb where c is a problem-independent constant.

Theorem C.1. LetM be a HOMDP model with X latent states and Y observations. With probability at least 1 − 5δ,
HOP-B outputs a sequence of policies π̂1, . . . , π̂K such that∑

k∈[K]

v(π?)− v(π̂k) .
√
H5K log(2/δ)︸ ︷︷ ︸
Azuma-Hoeffding

+
√
Y XH5Kι︸ ︷︷ ︸

Emission error

+
√
XAH4Kι+H4X2Aι(1 + log(K))︸ ︷︷ ︸

Transition error

(31)

+H3X
√
Y ι+HXA

√
H3ι︸ ︷︷ ︸

Residual pigeonhole error

, (32)

where ι = log(2X2Y AKH/δ).

C.2. High-probability events

We begin by defining several events that we show occur with high probability. For the optimal policy π?, there exist vectors
απ

?

h,τh
∈ RX , indexed by latent states, such that V π

?

h (bh, τh) = b>h α
π?

h,τh
(see Proposition B.1). As such, we define the

following event that bounds the deviation on T? by leveraging απ
?

in a similar manner to how the optimal value functions
are leveraged in improved MDP analyses such as Azar et al. (2017). Define

ET =

∀k, h, x, a, τh, ∑
y′,x′

O?(y
′|x′)

(
T?(x

′|x, a)− T̂k(x′|x, a)
)
απ∗h+1,τ ′h

(x′) ≤

√
CTH3 log(Y XAHK/δ)

nk(x, a)

 , (33)

where CT = 4. For h = H , the left side is just zero. Recall that τ ′h denotes the concatenated partial history of τh with
(y′, a) (i.e. the “next-step” partial history. The purpose of this event is to avoid resorting to a total variation bound which
necessitates immediate dependence on X . By instead bounding quantities solely in terms of the α-vector of the optimal
policy, απ

?

h+1,τ ′h
(x′), we can still produce valid bonuses. Such tricks are often used to get the best MDP regret bounds (Azar

et al., 2017). However, in contrast to the MDP style analyses, the above event must hold across all possible observable
histories τh which leads to additional polynomial dependence on H (due to there being exponentially many histories in H
and a union bound over these histories) and polylogarithmic dependence on Y . However, using this approach will save a X
factor in the sample complexity bound.

We also consider the following alternative version of ET . Let c ≥ 1 be a constant, potentially dependent on H . Define

EcT =

{
∀k, x, a, x′, T̂k(x′|x, a)− T?(x′|x, a) =

T?(x
′|x, a)

2c
+

2c log(X2AKH/δ)

nk(x, a)

}
. (34)

To handle estimation of the emission matrix, we will use a more conventional event based on the total variation difference of
O? and the estimated quantity Ôk:

EO =

{
∀k ∈ [K], x ∈ X , ‖O?(·|x)− Ôk(·|x)‖1 ≤

√
COY log(Y XKH/δ)

nk(x)

}
, (35)

where CO = 8.

Lemma C.2. P (ET ) ≥ 1− δ.

Proof. For each x, a we will assume thatKH independent transitions are preemptively sampled from T (·|x, a) and revealed
in order to the learner with each visit to (x, a), since this is distributionally identical to the interface the learner encounters.
Let T̂(n)(·|x, a) denote the empirical distribution estimated with the first n ∈ [KH] samples. We can then apply Hoeffding’s
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inequality to a specific sum of independent variables. Consider fixed n ∈ [KH], x, a and an arbitrary function g : X → R
such that ‖g‖∞ ≤ G uniformly for some G ≥ 0. Here, we will use x′(i) to denote the realizations of the preemptive samples
for i ∈ [n]. Then, with probability at least 1− δ,∑

x′

g(x′)
(
T̂(n)(x

′|x, a)− T (x′|x, a)
)

=
1

n

∑
i∈[n]

(∑
x′

g(x′)
(
1{x′(i) = x′} − T?(x′|x, a)

))
. (36)

Since this is a sum of independent random variables bounded within [−G,G], Hoeffding’s inequality implies that∑
x′

g(x′)
(
T̂(n)(x

′|x, a)− T?(x′|x, a)
)
≤ 2G

√
log(1/δ)

2n
(37)

with probability at least 1 − δ. Then, we can simply choose g(x′) =
∑
y′ O?(y

′|x′)απ∗h+1,τ ′h
(x′), which is fixed and has

|g(x′)| ≤ (H − h) via the bound on the size of the α-vectors due to Proposition B.1. Taking the union bound over all
n ∈ [KH], h ∈ [H], x ∈ X , a ∈ A, τh ∈ Yh ×Ah−1, we have

2(H − h)

√
log (Y hXAh−1H2K/δ)

2n
≤
√
CTH3 log (Y XAHK/δ),

which gives the result with constant CT = 4.

Lemma C.3. P (EcT ) ≥ 1− δ.

Proof. We again use the distributionally equivalent notation from the prior proof and the same notation for n. By Bernstein’s
inequality (Lemma F.3), with probability at least 1− δ,

T̂(n)(x
′|x, a)− T?(x′|x, a) ≤ T?(x

′|x, a)

2c
+

2c log(1/δ)

n
. (38)

Taking the union bound over all n ∈ [KH], x, x′ ∈ X , and a ∈ A gives the result.

EcT immediately implies the following error bound.
Corollary C.4. Let g : X → [−G,G] be a bounded function for G ≥ 0. Suppose that EcT holds. Then, for all x, a, k,∑

x′

(
T̂k(x′|x, a)− T?(x′|x, a)

)
g(x′) ≤ 1

2c

∑
x′

T?(x
′|x, a)g(x′) +

2cGX log(X2AKH/δ)

nk(x, a)
. (39)

Proof. The proof is immediate by rearranging the definition of EcT .

Lemma C.5. P (EO) ≥ 1− δ.

Proof. A similar approach via Bernstein’s inequality (Lemma F.3) guarantees the following for the analogously defined
Ô(n)(y|x) for n ∈ [KH]. With probability at least 1− δ, for all x, y, n,

|Ô(n)(y|x)−O?(y|x)| ≤
√

2O?(y|x)ι

n
+

ι

3n
, (40)

where ι = log(2Y XKH/δ). Therefore,

1

2
‖Ô(n)(·|x)−O?(·|x)‖1 ≤

Y ι

6n
+
∑
y

√
O?(y|x)ι

2n
(41)

≤ Y ι

2n
+

√
Y ι

2n
(42)

≤
√

2Y ι

n
, (43)

where the last line follows from the fact that 1
2‖Ô(n)(·|x)−O?(·|x)‖1 ≤ 1 always. So if the upper bound of the right side

is at most 1 then Y ι
2n is at most 1. Therefore, the desired bound holds with CO = 8.
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C.3. Optimism via reward bonuses

We let α̂k and α denote the α-vectors under the learned model M̂k, which uses the transition function T̂k and emission
function Ôk and bonus reward function r̂k, and the true modelM, respectively.
Lemma C.6. Suppose that ET and EO hold. For all k, h, τh, x, it holds that α̂π

?

k,h,τh
(x) ≥ απ

?

h,τh
(x) + Hεk(x) for all

h ∈ [H].

Proof. The proof is by induction on h. Let k be fixed so we can drop the subscript notation for it. Observe that we clearly
have the base case via Proposition B.1:

α̂π
?

H,τH (x, a) = r̂(x, a) (44)

= r(x, a) +Hε(x) + ε(x, a) (45)

= απ
?

H,τH (x, a) +Hε(x) + ε(x, a) (46)

≥ απ
?

H,τH (x, a) +Hε(x). (47)

Fix h ∈ [H−1]. Recall the definition of τ ′h as the “next-step” partial history. Assume that α̂π
?

h+1,τ ′h
(x) ≥ α̂π?

h+1,τ ′h
(x)+Hε(x).

Then,

απ
?

h,τh
(x, a) = r(x, a) +

∑
x′,y′

T?(x
′|x, a)O?(y

′|x′)απ
?

h+1,τ ′h
(x′) (48)

= r(x, a) +
∑
x′,y′

O?(y
′|x′)

(
T?(x

′|x, a)− T̂?(x′|x, a)
)
απ

?

h+1,τ ′h
(x′) (49)

+
∑
x′,y′

T̂ (x′|x, a)
(
O?(y

′|x′)− Ô(y′|x′)
)
απ

?

h+1,τ ′h
(x′) (50)

+
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)απ
?

h+1,τ ′h
(x′). (51)

The first summation is bounded using ET :∑
x′,y′

O?(y
′|x′)

(
T?(x

′|x, a)− T̂ (x′|x, a)
)
απ

?

h+1,τ ′h
(x′) ≤

√
CTH3 log(Y XAHK/δ)

n(x, a)
(52)

≤ ε(x, a). (53)

The second summation can be bounded in terms of the total variation distance for the emission matrices along with EO:∑
x′,y′

T̂ (x′|x, a)
(
O?(y

′|x′)− Ô(y′|x′)
)
απ

?

h+1,τ ′h
(x′) ≤

∑
x′

(H − h)T̂ (x′|x, a)‖O?(·|x′)− Ô(·|x′)‖1 (54)

≤
∑
x′

(H − h)T̂ (x′|x, a)ε(x′), (55)

which also uses Proposition B.1 to bound the magnitude of απ
?

. Finally, for the third summation, we can use the inductive
hypothesis to get∑

x′,y′

T̂ (x′|x, a)Ô(y′|x′)απ
?

h+1,τ ′h
(x′) ≤

∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)
(
α̂π

?

h+1,τ ′h
(x′)−Hε(x′)

)
. (56)

Combining these three individual bounds, we have

απ
?

h,τh
(x, a) ≤ r(x, a) + ε(x, a) +

∑
x′

(H − h)T̂ (x′|x, a)ε(x′) (57)

+
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)
(
α̂π

?

h+1,τ ′h
(x′)−Hε(x′)

)
(58)

≤ r(x, a) + ε(x, a) +
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)α̂π
?

h+1,τ ′h
(x′) (59)

= α̂π
?

h,τh
(x, a)−Hε(x), (60)
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where we have added and subtracted Hε(x) and used the definition of α̂π
?

h,τh
(Propostion B.1) in the last step. Applying this

inductively gives the result.

Lemma C.7. For all history-dependent π and all k, h, τh, it holds that ‖α̂πk,h,τh‖∞ ≤ 5H(H − h+ 1).

Proof. As before, we assume k is fixed and drop subscript notation for it. Note that we have r̂(x, a) = r(x, a) +Hε(x) +
ε(x, a). Furthermore,

ε(x) ≤ 2 (61)
ε(x, a) ≤ 2H. (62)

Therefore, r̂(x, a) ∈ [0, 5H]. Proposition B.1 implies the result.

C.4. Proof of the theorem

Define the intersection of the above events as E = ET ∩ EO ∩ EcT ∩ E1
T for some fixed c to be determined later. Note that

P (E) ≥ 1− 4δ by the union bound. For the remainder of the proof, we shall assume that these four hold simultaneously.
Recall also that we define the errors as

εk(x, a) := min

{
2H,

√
CTH3 log(Y XAHK/δ)

nk(x, a)

}
, (63)

εk(x) := min

{
2,

√
COY log(Y XKH/δ)

nk(x)

}
. (64)

We define an additional error term that is not used in the algorithm, only the analysis:

ε̃k(c, x, a) := min

{
2,

2cX log(X2AKH/δ)

nk(x, a)

}
. (65)

We begin by analyzing a fixed round k and will temporarily drop subscripts denoting k. We will use Ê and P̂ to denote
expectation and probabilities under the learned model M̂ during this round, as defined in the previous subsection. We let
v̂(π) denote the average value of the policy π under M̂, akin to the true value v(π). Then, using the α-vector definition of
the value functions,

v̂(π?)− v(π?) =
∑
x,y

ρ(x)Ô(y|x)α̂π
?

1,τ1(x)−
∑
x,y

ρ(x)O?(y|x)απ
?

1,τ1(x) (66)

≥ −H
∑
x

ρ(x)ε(x) +
∑
x,y

ρ(x)Ô(y|x)
(
α̂π

?

1,τ1(x)− απ
?

1,τ1(x)
)

(67)

≥ 0, (68)

where the last inequality follows from the optimism bound in Lemma C.6. Therefore, by EO and Lemma C.7,

v(π?)− v(π̂) ≤ v̂(π̂)− v(π̂) (69)

=
∑
x,y

ρ(x)Ô(y|x)α̂π̂1,τ1(x)−
∑
x,y

ρ(x)O?(y|x)απ̂1,τ1(x) (70)

≤ 5H2Eπ̂ [ε(x1)] + Eπ̂
[
α̂π̂1,τ1(x1)− απ̂1,τ1(x1)

]
(71)

The crux of the proof lies in the following lemma which recursively bounds the expected differences of the α-vectors under
π̂. For convenience, let us set C := 21.
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Lemma C.8. Let h ∈ [H − 1] be fixed. Then, under the aforementioned events, it holds that

Eπ̂
[
α̂π̂h,τh(xh)− απ̂h,τh(xh)

]
≤ Eπ̂

[
Hε(xh) + 2ε(xh, ah) + CH2ε̃(c, xh, ah)

]
(72)

+

(
1 +

1

2c

)
Eπ̂
[
α̂π̂h+1,τh+1

(xh+1)− απ̂h+1,τh+1
(xh+1) + 11H2ε(xh+1)

]
. (73)

Furthermore,

Eπ̂
[
α̂π̂H,τH (xH)− απ̂H,τH (xH)

]
≤ Eπ̂ [Hε(xH) + ε(xH , aH)] . (74)

Lemma C.8 is proved in Appendix C.5.

Now we can apply the bound from Lemma C.8 recursively to get the following bound on the value difference under the true
and learned models:

v̂(π̂)− v(π̂) ≤
(

1 +
1

2c

)H
Eπ̂

[∑
h

12H2ε(xh) + 2ε(xh, ah) + CH2ε̃(c, xh, ah)

]
. (75)

Therefore, we can choose c = H/2 to get

v̂(π̂)− v(π̂) ≤ Ce · Eπ̂

[∑
h

H2ε(xh) + ε(xh, ah) +H2ε̃(H/2, xh, ah)

]
. (76)

Summing over all k ∈ [K],

∑
k∈[K]

v(π?)− v(π̂k) ≤ Ce ·
∑
k∈[K]

Eπ̂

 ∑
h∈[H]

H2εk(xh) + εk(xh, ah) +H2ε̃k(H/2, xh, ah)

 . (77)

To bound this quantity with the pigeonhole principle, we apply the Azuma-Hoeffding bound (Lemma F.4) to the martingale
difference sequence defined with Zk,h := H2εk(xh)+εk(xh, ah)+H2ε̃k(H/2, xh, ah) where |Zk,h−Eπ̂k

[Zk,h] | ≤ 12H2.
Therefore, under this additional event,∑

k∈[K]

v(π?)− v(π̂k) (78)

≤ 48 · Ce ·H2
√
KH log(2/δ) + Ce ·

∑
k,h

H2εk(xh) + εk(xh, ah) +H2ε̃k(H/2, xh, ah) (79)

≤ 48 · Ce ·H2
√
KH log(2/δ) + Ce ·

∑
k,h

H2

√
COY ι

nk(xkh) ∨ 1
+

√
CTH3ι

nk(xkh, a
k
h) ∨ 1

+H2 · 2(H/2)Xι

nk(xkh, a
k
h) ∨ 1

(80)

where ι = log(2X2Y AKH/δ). Applying the pigeonhole principle the summations (Lemmas F.5 and F.7), we have∑
k∈[K]

v(π?)− v(π̂k) ≤ 48 · Ce
√
H5K log(2/δ) + 3 · Ce

√
COY XH5Kι+ 3 · Ce

√
CTXAH4Kι (81)

+ CeH4X2Aι(1 + log(K)) + Ce
(
H2
√
COY ιHX +

√
CTH3ιHXA

)
(82)

We recall that the constants have values CT = 4, CO = 8, and C = 21. Finally we conclude that the intersection of the
good events E and the Azuma-Hoeffding event occur simultaneously with probability at least 1− 5δ.

C.5. Supporting results

C.5.1. PROOF OF LEMMA C.8

Proof of Lemma C.8. The second claim follows simply by the definition of r̂ and using the form of α̂π̂H and απ̂H at step H .
We focus on the first claim. Note that, from the recursive definitions of α̂ and α in Proposition B.1, we have

α̂π̂h,τh(x, a)− απ̂h,τh(x, a) = r̂(x, a)− r(x, a) + B̂τh(x, a)
[
α̂π̂h+1

]
− Bτh(x, a)

[
απ̂h+1

]
, (83)



Learning in POMDPs is Sample-Efficient with Hindsight Observability

where we define the operators

Bτ (x, a) [α] :=
∑
x′,y′

O?(y
′|x′)T?(x′|x, a)ατ ′(x

′) (84)

B̂τ (x, a) [α] :=
∑
x′,y′

Ô(y′|x′)T̂ (x′|x, a)ατ ′(x
′) (85)

and we use the same convention of defining τ ′ as the concatenation of τ and (a, y′). Then,

α̂π̂h,τh(x, a)− απ̂h,τh(x, a) = r̂(x, a)− r(x, a) + B̂τh(x, a)
[
α̂π̂h+1

]
− Bτh(x, a)

[
απ̂h+1

]
(86)

= Hε(x) + ε(x, a) + B̂τh(x, a)
[
α̂π̂h+1

]
− Bτh(x, a)

[
απ̂h+1

]
(87)

= Hε(x) + ε(x, a) +
(
B̂τh(x, a)− Bτh(x, a)

) [
α̂π̂h+1

]
︸ ︷︷ ︸

(I)

+Bτh(x, a)
[
α̂π̂h+1 − απ̂h+1

]
(88)

Next, we use Lemma C.9 to get a bound on (I).

Lemma C.9. Term (I) is bounded above by the following quantity:

(I) ≤
Bτh(x, a)

[
α̂π̂h+1 − απ

?

h+1

]
2c

+ 7H2ε̃(c, x, a) + 14H2ε̃(1, x, a) + ε(x, a) + 11H2
∑
x′

T?(x
′|x, a)ε(x′) (89)

Hence, because ε̃(1, x, a) ≤ ε̃(c, x, a) for c ≥ 1 and we set C = 21, the expected difference in α-vectors is then bounded
above by

Eπ̂
[
α̂π̂h,τh(xh, ah)− απ̂h,τh(xh, ah)

]
≤ Eπ̂

[
Hε(xh) + 2ε(xh, ah) + CH2ε̃(c, xh, ah) + 11H2

∑
x′

T?(x
′|xh, ah)ε(x′)

]
(90)

+ Eπ̂

[
Bτh(xh, ah)

[
α̂π̂h+1 − απ

?

h+1

]
2c

]
(91)

+ Eπ̂
[
Bτh(xh, ah)

[
α̂π̂h+1 − απ̂h+1

]]
(92)

≤ Eπ̂

[
Hε(xh) + 2ε(xh, ah) + CH2ε̃(c, xh, ah) + 11H2

∑
x′

T?(x
′|xh, ah)ε(x′)

]
(93)

+ Eπ̂

[
Bτh(xh, ah)

[
α̂π̂h+1 − απ̂h+1

]
2c

]
(94)

+ Eπ̂
[
Bτh(xh, ah)

[
α̂π̂h+1 − απ̂h+1

]]
, (95)

where the second line (before-and-after changes marked in red) follows because

Eπ̂
[
Bτh(xh, ah)

[
απ̂h+1

]]
= Eπ̂

[
V π̂h+1(τh+1)

]
(96)

≤ Eπ̂
[
V π

?

h+1(τh+1)
]

(97)

= Eπ̂
[
Bτh(xh, ah)

[
απ

?

h+1

]]
(98)

since π? is the optimal history-dependent policy. Therefore, since Eπ̂ [Bτh(xh, ah) [αh+1]] = Eπ̂ [αh+1(xh+1)], we
conclude that

Eπ̂
[
α̂π̂h,τh(xh)− απ̂h,τh(xh)

]
= Eπ̂

[
α̂π̂h,τh(xh, ah)− απ̂h,τh(xh, ah)

]
(99)

≤ Eπ̂
[
Hε(xh) + 2ε(xh, ah) + CH2ε̃(c, xh, ah)

]
(100)

+

(
1 +

1

2c

)
Eπ̂
[
α̂π̂h+1,τh+1

(xh+1)− απ̂h+1,τh+1
(xh+1) + 11H2ε(xh+1)

]
. (101)
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C.5.2. PROOF OF LEMMA C.9

Here, we restate the bound on (I) before proving it.

Lemma C.9. Term (I) is bounded above by the following quantity:

(I) ≤
Bτh(x, a)

[
α̂π̂h+1 − απ

?

h+1

]
2c

+ 7H2ε̃(c, x, a) + 14H2ε̃(1, x, a) + ε(x, a) + 11H2
∑
x′

T?(x
′|x, a)ε(x′) (89)

Proof of Lemma C.9.

(I) =
(
B̂τh(x, a)− Bτh(x, a)

) [
α̂π̂h+1 − απ

?

h+1

]
+
(
B̂τh(x, a)− Bτh(x, a)

) [
απ

?

h+1

]
(102)

≤
(
B̂τh(x, a)− Bτh(x, a)

) [
α̂π̂h+1 − απ

?

h+1

]
+ ε(x, a) + (H − h)

∑
x′

T̂ (x′|x, a)ε(x′) (103)

≤
Bτh(x, a)

[
α̂π̂h+1 − απ

?

h+1

]
2c

+ 6H2ε̃(c, x, a) + ε(x, a) + 7H2
∑
x′

T̂ (x′|x, a)ε(x′) (104)

≤
Bτh(x, a)

[
α̂π̂h+1 − απ

?

h+1

]
2c

+ 6H2ε̃(c, x, a) + 14H2ε̃(1, x, a) + ε(x, a) + 11H2
∑
x′

T?(x
′|x, a)ε(x′). (105)

The first inequality uses Lemma C.10 and the second uses Lemma C.11. The last inequality applies Corollary C.4 using E1
T ,

which guarantees that

7H2
∑
x′

T̂ (x′|x, a)ε(x′) ≤ 11H2
∑
x′

T?(x
′|x, a)ε(x′) + 14H2ε̃(1, x, a) (106)

since ε(x′) ≤ 2 for all x′ ∈ X by definition.

C.5.3. HELPERS

Lemma C.10. If ET and EO hold then,(
B̂τh(x, a)− Bτh(x, a)

) [
απ

?

h+1

]
≤ ε(x, a) + (H − h)

∑
x′

T̂ (x′|x, a)ε(x′). (107)

Proof. We expand the definitions of the B̂ and B operators and then apply ET and EO directly.(
B̂τh(x, a)− Bτh(x, a)

) [
απ

?

h+1

]
=
∑
x′,y′

O?(y
′|x′)

(
T̂ (x′|x, a)− T?(x′|x, a)

) [
απ

?

h+1,τ ′h
(x′)

]
(108)

+
∑
x′,y′

(
Ô(y′|x′)−O?(y′|x′)

)
T̂ (x′|x, a)

[
απ

?

h+1,τ ′h
(x′)

]
(109)

≤ ε(x, a) + (H − h)
∑
x′

T̂ (x′|x, a)ε(x′). (110)

Lemma C.11. If EcT and EO hold, then

(
B̂τh(x, a)− Bτh(x, a)

) [
α̂π̂h+1 − απ

?

h+1

]
≤
Bτh(x, a)

[
α̂π̂h+1 − απ

?

h+1

]
2c

+ 6H2ε̃(c, x, a) (111)

+ 6H2
∑
x′

T̂ (x′|x, a)ε(x′). (112)



Learning in POMDPs is Sample-Efficient with Hindsight Observability

Proof. For convenience, let α := α̂π̂ and α′ := απ
?

. Observe that Proposition B.1 and Lemma C.7 guarantee that
|αh+1,τ ′h

− α′h+1,τ ′h
| ≤ 6H(H − h). Then,(
B̂τh(x, a)− Bτh(x, a)

) [
αh+1 − α′h+1

]
(113)

=
∑
x′

(
T̂ (x′|x, a)− T?(x′|x, a)

)∑
y′

O?(y
′|x′)

(
αh+1,τ ′h

(x′)− α′h+1,τ ′h
(x′)

)
(114)

+
∑
x′,y′

T̂ (x′|x, a)
(
Ô(y′|x′)−O?(y′|x′)

)(
αh+1,τ ′h

(x′)− α′h+1,τ ′h
(x′)

)
(115)

≤
∑
x′

(
T̂ (x′|x, a)− T?(x′|x, a)

)∑
y′

O?(y
′|x′)

(
αh+1,τ ′h

(x′)− α′h+1,τ ′h
(x′)

)
(116)

+ 6H(H − h)
∑
x′,y′

T̂ (x′|x, a)ε(x′) (117)

≤

∑
x′ T?(x

′|x, a)
∑
y′ O?(y

′|x′)
(
αh+1,τ ′h

(x′)− α′h+1,τ ′h
(x′)

)
2c

(118)

+6H(H − h) min

{
2,

2cX log(X2AKH/δ)

n(x, a)

}
(119)

+ 6H(H − h)
∑
x′

T̂ (x′|x, a)ε(x′) (120)

≤
Bτh(x, a)

[
αh+1 − α′h+1

]
2c

+ 6H2ε̃(c, x, a) + 6H2
∑
x′

T̂ (x′|x, a)ε(x′). (121)

The first inequality uses EO to bound the total variation distance betweenO? and Ô (before-and-after changes marked in red).
The second inequality uses EcT along with Corollary C.4 by setting g(x′) =

∑
y′ O(y′|x′)

(
αh+1,τ ′h

(x′)− α′h+1,τ ′h
(x′)

)
(before-and-after changes marked in blue). The last inequality simply uses the definition of B and ε̃(c, x, a) and the fact that
H(H − h) ≤ H2.

C.6. First steps towards function approximation

A natural follow-up question is whether HOP-B can be easily generalized to incorporate function approximation. While we
leave in depth discussion of a much more general form of function approximation to Section 6, we remark that it is easy to
replace the tabular estimation of O? with function approximation as long as the latent states are tabular.

Consider a function class Θ ⊆ (X → ∆(Y)). For simplicity assume that Θ is finite, in which case we expect the complexity
of Θ to be measured as the log-cardinality log(|Θ|), as is standard. Assuming that Θ realizes O? (O? ∈ Θ) and it is proper
(O(·|x) ∈ ∆(Y) for all x ∈ X and O ∈ Θ), one can update Ôk via maximum likelihood estimation (MLE):

Ôk+1 = arg max
O∈Θ

∑
`∈[k],h∈[H]

logO(y`h|x`h).

Then, we change the bonuses to be

εk(x, a) = min

{
2,

√
C ′TX log (X2AKH)

nk(x, a)

}
(122)

εk(x) = min

{
2,

√
C ′O log(|Θ|XK/δ)

nk(x)

}
, (123)

where C ′T = 8 and C ′O = 8 and the optimistic reward function is changed to

r̂k(x, a) = r(x, a) + 3Hεk(x, a) +Hεk(x). (124)
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Note that the algorithm still requires only point estimates of O? as opposed to maintaining a version space. These changes
yield the following bound:

Proposition C.12. LetM be a HOMDP model with X latent states. With probability at least 1− 3δ, HOP-B with emission
function class Θ outputs a sequence of policies π̂1, . . . , π̂K such that

Reg(K) = O
(√

H5XK (log(|Θ|) + ι) +
√
H5X2AKι

)
(125)

where ι = log(2X2AKH/δ).

We see that the original Y dependence is replaced with the complexity log(|Θ|). An interesting observation of this result is
that we do not have to tailor the exploration to the type of function approximator used for O? aside from adjustment of the
bonus magnitude. The class Θ can also be completely arbitrary and need not satisfy any further structural conditions besides
realizability and learnability for the MLE (i.e. manageable complexity).

We finally remark that the dependence on X is worse than the purely tabular case. This is due to an alternative technical
approach (akin to the difference between the UCRL bound of Auer et al. (2008) and the improved version of Azar et al.
(2017)). It is possible to apply our original technique to this case as well, but, in contrast to MDPs, this would yield a log(Y )
factor due to a union bound over histories, which is not ideal. We believe the simplicity of this analysis and ability to handle
infinite Y is a more desirable choice.

C.6.1. PROOF OF PROPOSITION C.12

We define new high probability events for the count-based estimate T̂k and maximum likelihood estimate Ôk:

ET =

{
∀k ∈ [K], x ∈ X , a ∈ A, ‖T (·|x, a)− T̂k(·|x, a)‖1 ≤

√
C ′TX log(X2AKH/δ)

nk(x, a)

}
(126)

EO =

{
∀k ∈ [K], x ∈ X , ‖O(·|x)− Ôk(·|x)‖1 ≤

√
C ′O log(XK|Θ|/δ)

nk(x)

}
. (127)

with C ′T = 8 and C ′O = 8. P (ET ) ≥ 1− δ follows the same proof as Lemma C.5 and P (EO) ≥ 1− δ follows the same
proof as Lemma E.2 but applied to the emission function (see also Theorem 21 of Agarwal et al. (2020)). This guarantees
that, with probability at least 1− δ,

nk(x)‖O(·|x`h)− Ôk(·|x`h)‖21 ≤
∑

`∈[k−1],h∈[H]

‖O(·|x`h)− Ôk(·|x`h)‖21 (128)

≤ 8 log(K|Θ|/δ) (129)

for all k ∈ [K]. Rearranging ensures the claim on P (EO). Assuming these events hold, we show that this ensures optimism
of the α-vectors as before.

Let α̂ denote the α-vector for the estimated model T̂ and Ô and let α be the one for the true model.

Lemma C.13. Let the above events hold. Then, α̂πk,h,τh ≥ α
π
h,τh

(x) +Hεk(x)

Proof. For now, we omit the subscript notation denoting the round k. By the above events, we have that

α̂πH,τH (x) =
∑
a

π(a|τh) (r(x, a) +Hε(x) + 3Hε(x, a)) , (130)

which means that

α̂πH,τH (x)− απH,τH (x) ≥ Hε(x) + 3Hε(x, a) (131)

≥ Hε(x) (132)



Learning in POMDPs is Sample-Efficient with Hindsight Observability

Inductively, assume that α̂πh+1,τh+1
(x) ≥ απh+1,τh+1

(x) +Hε(x). Then, using recursive definitions of the α-vectors,

α̂πh,τh(x, a)− απh,τh(x, a) = r̂(x, a) +
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)α̂πh+1,τ ′h
(x′) (133)

− r(x, a)−
∑
x′,y′

T?(x
′|x, a)O?(y

′|x′)απh+1,τ ′h
(x′) (134)

≥ r̂(x, a)− r(x, a) (135)

+
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)
(
απh+1,τ ′h

(x′) +Hε(x′)
)

(136)

−
∑
x′,y′

T?(x
′|x, a)O?(y

′|x′)απh+1,τ ′h
(x′) (137)

= r̂(x, a)− r(x, a) (138)

+
∑
x′,y′

(
T̂ (x′|x, a)− T?(x′|x, a)

)
Ô(y′|x′)απh+1,τ ′h

(x′) (139)

+
∑
x′,y′

T?(x
′|x, a)(x′)απh+1,τ ′h

(
Ô(y′|x′)−O?(y′|x′)

)
(140)

+H
∑
x′,y′

T̂ (x′|x, a)Ô(y′|x′)ε(x′), (141)

where τ ′h is again the concatenation of τh with y′ and a. Now, we can lower bound the above using the total variation
distance:

α̂πh,τh(x, a)− απh,τh(x, a) ≥ r̂(x, a)− r(x, a) (142)

−H‖T̂ (·|x, a)− T?(·|x, a)‖1 (143)

−H
∑
x′

T?(x
′|x, a)‖Ô(·|x′)−O?(·|x′)‖1 (144)

+H
∑
x′

T̂ (x′|x, a)ε(x′). (145)

(146)

Recognizing that ε(x′) ≤ 2 by definition, the last term is lower bounded as

H
∑
x′

T̂ (x′|x, a)ε(x′) ≥ −2H‖T̂ (·|x, a)− T?(·|x, a)‖1 +H
∑
x′

T?(x
′|x, a)ε(x′) (147)

Putting these all together, we have

α̂πh,τh(x, a)− απh,τh(x, a) ≥ r̂(x, a)− r(x, a) (148)

− 3H‖T̂ (·|x, a)− T?(·|x, a)‖1 (149)

−H
∑
x′

T?(x
′|x, a)

(
‖Ô(·|x′)−O?(·|x′)‖1 − ε(x′)

)
(150)

≥ r̂(x, a)− r(x, a) (151)

− 3H‖T̂ (·|x, a)− T?(·|x, a)‖1 (152)

≥ Hε(x) + 3Hε(x, a)− 3H‖T̂ (·|x, a)− T?(·|x, a)‖1 (153)
≥ Hε(x) (154)

Applying this inductive argument backwards along h = H, . . . , 1 gives the result.
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Lemma C.14. Let the above events hold. Then, for any history-dependent policy π, it holds that v̂k(π)− v(π) ≥ 0, where
v̂k is the policy value under the model T̂k, Ôk, and r̂k.

Proof. The proof is immediate from the α-vector representation of the value functions and Lemma C.13:

v̂k(π)− v(π) =
∑
x1,y1

Ô(y1|x1)ρ(x1)α̂πk,1,τ1(x1)−
∑
x1,y1

O?(y1|x1)ρ(x1)απ1,τ1(x1) (155)

=
∑
x1,y1

(
Ôk(y1|x1)−O?(y1|x1)

)
ρ(x1)απ1,τ1(x1) (156)

+
∑
x1,y1

Ô(y1|x1)ρ(x1)
(
α̂πk,1,τ1(x1)− απ1,τ1(x1)

)
(157)

≥ −
∑
x1

Hρ(x1)εk(x1) +
∑
x1,y1

HÔ(y1|x1)ρ(x1)εk(x1) (158)

= 0. (159)

We are now ready to prove the result. Let Êk and P̂k denote the expectation and measure under the learned model at round
k. Then,

Reg(K) =
∑
k∈[K]

v(π?)− v(π̂k) (160)

≤
∑
k∈[K]

v̂k(π̂k)− v(π̂k) (161)

=
∑
k∈[K]

Êk,π̂k

 ∑
h∈[H]

r̂k(xh, ah)

− Eπ̂k

 ∑
h∈[H]

r(xh, ah)

 (162)

=
∑
k∈[K]

Êk,π̂k

 ∑
h∈[H]

r(xh, ah) +Hεk(xh) + 3Hεk(xh, ah)

− Eπ̂k

 ∑
h∈[H]

r(xh, ah)

 (163)

≤
∑
k∈[K]

H‖P̂k,π̂k
− Pπ̂k

‖1 + 3HÊk,π̂k

 ∑
h∈[H]

εk(xh) + εk(xh, ah)

 . (164)

Since εk(x) and εk(x, a) are no greater than 2, we can change distributions in the last term of the previous display to get

Reg(K) ≤
∑
k∈[K]

13H2‖P̂k,π̂k
− Pπ̂k

‖1 + 3HEπ̂k

 ∑
h∈[H]

εk(xh) + εk(xh, ah)

 . (165)

To bound the remaining terms, we rely on the Azuma-Hoeffding inequality (Lemma F.4) with probability at least 1− δ and
the simulation lemma (Lemma E.1).
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Figure 3: Hard instance of POMDP. The latent state space is a binary tree starting at x0 and the learner traverses a layer each time step. The root and and second layer depicted
on the left. Observations about which direction it traversed are revealed at each step. In the last and second to last layer, one of many triplets like Figure 2 is encountered (only
one depicted in this figure on the right). The policy has no control until the last layer.

The regret can then further be bounded as

Reg(K) ≤
∑
k∈[K]

13H2Eπ̂k

 ∑
h∈[H]

εk(xh) + εk(xh, ah)

+ 3HEπ̂k

 ∑
h∈[H]

εk(xh) + εk(xh, ah)

 (166)

= 16H2
∑

k∈[K],h∈[H]

Eπ̂k
[εk(xh) + εk(xh, ah)] (167)

≤ 64H2
√
KH log(2/δ) + 16H2

∑
k,h

εk(xkh) + εk(xkh, a
k
h) (168)

≤ 64H2
√
KH log(2/δ) + 16H2

∑
k,h

√
C ′O(log(|Θ|) + ι)

max{1, nk(xkh)}
+

√
C ′TXι

max{1, nk(xkh, a
k
h)}

, (169)

To bound this final term, as before, we appeal to pigeonhole principle (Lemma F.5):

Reg(K) .
√
H5K log(2/δ) +

√
H5XK (log(|Θ|) + ι) +

√
H5X2AKι (170)

+H3X
√

log(|Θ|) + ι+H3XA
√
Xι. (171)

By a union bound on the events ET and EO and the Azuma-Hoeffding event, we conclude that this occurs with probability at
least 1− 3δ.

D. Proof of Lower Bound Theorem 5.1
In this section, we formally prove the information-theoretic lower bound of Theorem 5.1. We take the standard minimax
approach: design a class of problem instances U such that, for any algorithm that generates a policy π̂ over K episodes of
interaction, there is always a problem instance u ∈ U with

Eu [v(π?)− v(π̂)] ≥ ε
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for some ε that we will try to control. The expectation is over the algorithm and data generated under the instance u.

While the intuition for the lower bound in the main paper with X = 3 is useful for understanding how the Y dependence
appears in the lower bound, it is not immediate to generalize. Note that it is not sufficient to take the naive approach of
simply maintaining H = 1 and increasing the number of latent states. In such cases, the possible problem instances will
either have very low loss separation or be very easy to test and differentiate. This would mean an algorithm could easily
either find out how to act optimally or not acting optimally is “close enough.” The issue is that the posterior distribution over
X given an observation would end up being very close to uniform (to avoid being able to simply test to distinguish between
instances). However, this allows for a potentially large margin of error for any policy since even the optimal policy will
struggle greatly to achieve high rewards regardless.

This issue can be resolved by leveraging the history to reduce the problem to solving many (on the order X) 3-latent state
subproblems. Consider the sketch POMDP in Figure 3, which is the full version of the on the one in Figure 2. Figure 3
depicts a binary tree in which the policy randomly traverses the nodes to the leaves of the last layer H . The last and second
to last layers collectively make up a swath of 3-latent state problems. The catch is that, as the policy traverses the nodes, the
observations reveal its exact state in the tree up to layer H − 1 by revealing whether it traversed to the upper or lower child
at each step with {yup, ydown}. Thus it can exactly decode its state at layer H − 1 and find out which of the 3-latent state
problems it is in. At layer H − 1, it is faced with one of the possible 3-latent state problems and it must act optimally.

We will design the emission function such that it is difficult to decode whether the learner is in the upper or lower child in
the same way as we described for the case when X = 3. Thus, the learner will have to visit a given h = H − 1 layer parent
at least Ω(Y ) times before learning the optimal policy for that parent. Furthermore, it must learn the optimal policy for
at least a constant fraction of the parents (size Ω(X)) to compete with the full optimal policy. Together this yields total
interactions on the order of Ω(XY ).
Theorem 5.1. Fix ε ≤ 1/64 and X,Y ∈ N such that Y ≥ 6, (X + 1) ≥ 128 log 2. For any algorithm A producing a policy
π̂ in K episodes of interaction, there exists a HOMDP with the aforementioned cardinalities and H � log2(X) and A = 2
such that A needs

K = Ω
(
XY/ε2

)
to guarantee E [v(π?)− v(π̂)] ≤ ε, where the expectation is taken over randomness in the data and algorithm.

D.1. Construction of instance class

Note that the preconditions ensure that Y (X + 1) ≥ 512 log 2.

The learner starts deterministically at x0. Without loss of generality, we assume that X + 1 is a power of 2 and Y is even.
Otherwise, we can reduce X + 1 to the nearest power of 2 and reduce Y to the nearest even number by at most losing a
constant factor in the bound. There are a total of H = log2(X + 1) timesteps. Before the Hth timestep, rewards are all
zero and the learner transitions uniformly randomly from the current latent state to either the upper or lower child latent
state in the next layer, regardless of the action (see Figure 3). An observation yup or ydown is revealed indicating whether
the learner is currently in the upper or lower child of the parent latent state. Hence, for h ≤ H − 1, the latent state can be
exactly decoded given the history of observations. We assume that all states in the final layer h = H then transition to a
dummy state such as x0 at H + 1.

We denote the states of the final layer h = H by X ′. Note that X ′ consists of X ′ := X+1
2 latent states. States in X ′ can

be grouped into X′

2 groups of 2 where the states in a group share the same parent. Let x1
i and x2

i be the upper and lower
children of the same parent state xi, respectively. The reward function is defined as

r(x1
i , a) =

{
1 a = a1

0 a = a2

(172)

r(x2
i , a) =

{
0 a = a1

1 a = a2

(173)

This is duplicated for all the parent-child triplets (xi, x
1
i , x

2
i ) in the second to last and last layers. The emission function in

the final layer is different depending on the parent xi and the child. For a child latent state x ∈ X ′, we design O?(·|x) to be
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supported on Y ′ := Y \ {yup, ydown} with cardinality Y ′ = |Y ′|, which will be specified presently. The instances will vary
based on the selection of O?.

D.2. Selection of emission function

We construct the instances by perturbing the probabilities in O? so that they deviate slightly from uniform. To ensure that
probabilities properly sum to 1, we will split Y ′ into equal partitions Y ′+ and Y ′− each of size |Y

′|
2 . We can construct a

bijection such that for any y ∈ Y ′− there is a “mirror” y+ in Y ′+. An instance in the class will be specified by some vector

u ∈ {−1, 1}X′Y ′
4 which determines the observation matrix. We will denote the observation matrix for instance u with O?,u.

Fix ε > 0. We index into the vector u with an observation in y ∈ Y ′+ and a parent latent state xi ∈ X in the second to last
layer. Let x1

i and x2
i be leaf latent states that share the same parent xi. Note that this is valid since the child states (as we

construct them) are distinct for each parent. Then for x1
i , define

O?,u(y|x1
i ) =

1 + u(y, xi)ε

Y ′
∀y ∈ Y ′+, (174)

O?,u(y|x1
i ) =

1− u(y+, xi)ε

Y ′
∀y ∈ Y ′−, (175)

and for x2,

O?,u(y|x2
i ) =

1− u(y, xi)ε

Y ′
∀y ∈ Y ′+, (176)

O?,u(y|x2
i ) =

1 + u(y+, xi)ε

Y ′
∀y ∈ Y ′−. (177)

We will also use Pu and Eu to denote the measure and expectation, respectively, under instance u. We can verify that,
conditioned on the the parent xi, the distribution over Y ′ is uniform:

Pu(y|xi) = P (x1
i |xi)O?,u(y|x1

i ) + P (x2
i |xi)O?,u(y|x2

i ) (178)

=
O?,u(y|x1

i ) +O?,u(y|x2
i )

2
=

1

Y ′
. (179)

It is also worth noting that, conditioned on the parent xi (equivalently, on the history y1:H−1), the posterior is:

Pu(x1
i |yH , xi) =

1 + u(yH , xi)ε

2
∀y ∈ Y ′+ (180)

Pu(x1
i |yH , xi) =

1− u((yH)+, xi)ε

2
∀y ∈ Y ′−. (181)

Furthermore, by Lemma 4.7 of Massart (2007), there exists U ∈ {−1, 1}X′Y ′/4 such that |U| ≥ exp(Y ′X ′/32) and
‖u− u′‖1 ≥ X′Y ′

8 for all u, u′ ∈ U such that u 6= u′.

D.3. Separability condition

We now show in this construction that no history-dependent policy can perform well on all instances in U simultaneously.
Let Π be the class of all history-dependent, deterministic policies. Let u ∈ U be fixed. It is clear that the optimal policy
for instance u chooses action â such that r(x̂, â) = 1 where x̂ = arg maxx Pu(x|y1:H) ∈ X ′ maximizes the posterior. We
denote this policy by π?u.

Consider an arbitrary π. Recall that, by construction, there is a bijection between y1:H−1 and the parent latent states at layer
H − 1. To avoid notational clutter, we will now denote this by z (which we have previously written as xi). Thus, we can
equivalently write π as a function of z and the last observation yH . Define

vu(π|z) = Eu [r(x, π(yH , z)) | z] (182)

as the conditional value of π given it has reached the parent z in instance u. A straightforward calculation shows that

vu(π?u|z)− vu(π|z) = ε · Nz(π, π
?
u)

Y ′
(183)
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where Nz(π, π?u) :=
∑
y∈Y′ 1 {π?u(y, z) 6= π(y, z)} is the number of observations on which π and π?u disagree given parent

z. The sub-optimality gap on the full instance is simply the average over the X′

2 parents:

vu(π?u)− vu(π) = ε
∑
z

2Nz(π, π
?
u)

Y ′X ′
=

2εN(π, π∗u)

Y ′X ′
, (184)

where N(π, π∗u) =
∑
z

∑
y∈Y′ 1 {π?u(y, z) 6= π(y, z)} is the total number of disagreements at layer H . Then, for any

u, u′ ∈ U such that u 6= u′,

vu(π?u)− vu(π)︸ ︷︷ ︸
error on instance u

+ vu′(π
?
u′)− vu′(π)︸ ︷︷ ︸

error on instance u′

=
2ε

Y ′X ′
(N(π, π?u) +N(π, π?u′)) (185)

≥ 2εN(π?u, π
?
u′)

Y ′X ′
. (186)

Finally, we recall that U is such that ‖u− u′‖1 ≥ X′Y ′

8 , which ensures that u and u′ differ on at least X
′Y ′

16 elements, which
implies that N(π?u, π

?
u′) ≥ X′Y ′

16 . Thus, we have

vu(π?u)− vu(π) + vu′(π
?
u′)− vu′(π) ≥ ε

8
(187)

D.4. Fano’s inequality application

Thus far, we have detailed the instance class and shown that no policy can achieve error less than ε
16 on more than one

instance. To complete the proof, we apply Fano’s inequality to show that these instances are essentially indistinguishable.

Let π̂ be the output of any algorithm A that samples from a POMDP instance over K episodes (which a random variable
dependent on the instance in which it is run). We have

max
u∈U

Eu [vu(π?u)− vu(π̂)] ≥ ε

16
inf
Ψ

1

|U|
∑
u∈U

Pu (Ψ 6= u) (188)

where Ψ is a data-dependent test function, the inf is taken over all measurable tests, Pu denotes the measure under instance
u. By Fano’s inequality,

max
u∈U

Eu [vu(π?u)− vu(π̂)] ≥ ε

16

(
1− maxu6=u′ DKL (Pu‖Pu′) + log 2

log |U|

)
(189)

where Pu and Pu′ are measures under instances u and u′, respectively. Note that these are dependent on the algorithm A,
which determines which actions to take over the K episodes. That is, the probability of taking action akh in round k at step h
is A(akh|τ̄1:k−1, τ̄kh ) where we recall that τ̄kh = (x1:h, y1:h, a1:h−1) is the partial trajectory and τ̄k is the full trajectory, both
containing the latent states. Crucially, note that we allow A to be dependent on the latent states. Note that, for HOMDP
model, we usually assume that this is further reduced to only dependence on historical observations and actions within
the current partial trajectory so that τ̄kh becomes τkh in the conditional part. However, this generality allows us to capture
algorithms that also can access the underlying state even during training deployments.

The chain rule of the KL divergence gives us the following decomposition in terms of conditional KL divergences:

DKL(Pu‖Pu′) =
∑
k∈[K]

Eτ̄1:k−1

[
DKL

(
Pu(τ̄k)‖Pu′(τ̄k) | τ̄1:k−1

)]
.

where we abuse notation slightly and let Pu(τ̄k) denote the distribution over trajectory τ̄k. Then, the individual terms are
also written as

Eτ̄1:k−1

[
DKL

(
Pu(τ̄k)‖Pu′(τ̄k) | τ̄1:k−1

)]
= Eτ̄1:k−1

[∑
τ̄k

Pu(τ̄k | τ̄1:k−1) log
Pu(τ̄k | τ̄1:k−1)

Pu′(τ̄k | τ̄1:k−1)

]
. (190)
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Observe that the conditional probability of a trajectory is

Pu(τ̄k | τ̄1:k−1) = Pu(xk1)

H∏
h=1

O?,u(ykh|xkh)A(ah|τ̄kh , τ̄1:k−1)T?,u(xkh+1|xkh, akh) (191)

Between the instances u and u′, everything is the same (including A) except for O?,u(·|xkH) and O?,u′(·|xkH) in the last
layer by construction. Furthermore, we have that P (xkH |τ̄1:k−1) = P (xkH) = 1

X′ since the policy has no control over the
first H − 1 steps. Therefore, the conditional KL divergence for any k becomes:

Eτ̄1:k−1

[
DKL

(
Pu(τ̄k)‖Pu′(τ̄k) | τ̄1:k−1

)]
=
∑
yH ,xH

Pu(xH |τ̄1:k−1
H ) log

O?,u(yH |xH)

O?,u′(yH |xH)
(192)

=
1

X ′

∑
xH∈X ′

∑
yH

log
O?,u(yH |xH)

O?,u′(yH |xH)
(193)

=
1

X ′

∑
x∈X ′

∑
y∈Y′−

O?,u(y|x) log
O?,u(y|x)

O?,u′(y|x)
+O?,u(y+|x) log

O?,u(y+|x)

O?,u′(y+|x)

(194)

≤ 2

X ′Y ′

∑
x∈X ′,y∈Y′−

(1 + ε) log
1 + ε

1− ε
+ (1− ε) log

1− ε
1 + ε

(195)

≤ 2

X ′Y ′

∑
x∈X ′,y∈Y′−

8ε2 (196)

= 8ε2 (197)

for ε < 1/2. Therefore, for if K ≤ log |U|−2 log 2
16ε2 , we have

max
u∈U

Eu [vu(π?u)− vu(π̂)] ≥ ε

16

(
1− 8Kε2 + log 2

log |U|

)
(198)

≥ ε

32
(199)

From the lower bound on the size of U , we have that

K ≤ X ′Y ′

1024ε2
(200)

implies the above condition because

K ≤ X ′Y ′

1024ε2
(201)

≤ X ′Y ′/32− 2 log 2

16ε2
(202)

≤ log |U| − 2 log 2

16ε2
(203)

as long as X ′Y ′ ≥ 64 · 2 log 2. Since Y ′ = Y − 2 and X ′ = X+1
2 , we have

X ′Y ′ =
(X + 1)(Y − 2)

2
≥ (X + 1)Y

4
≥ 128 log 2

where the second inequality follows from the constraints on X and Y ≥ 6.
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E. Proof of Theorem 6.3
A core component of the analysis is a simulation lemma that bounds the difference in values of a policy on two different
POMDPs via the total variation distance of their models.

Lemma E.1 (Simulation Lemma). Consider a POMDP model with transition matrix T̂ , emission matrix Ô, and reward
function r. Denote the value function and measure under this POMDP by v̂ and P̂ respectively. Then, for any history-
dependent policy π,

‖P̂π − Pπ‖1 ≤ Eπ
∑
h∈[H]

‖O?(·|xh)− Ô(·|xh)‖1 + ‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1.

Furthermore,

|v(π)− v̂(π)| ≤ HEπ
∑
h∈[H]

‖O?(·|xh)− Ô(·|xh)‖1 + ‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1,

where Eπ denotes the expectation following policy π under the true modelM.

This observation, although crude sometimes,4 is useful in this setting because it is possible to estimate the models in
HOMDP, in contrast to the POMDP where faithful recovery of O? and T? is not always possible.

E.1. High-probability events

Similar to the tabular setting, we define the following events and later show that they each occur with high probability.

ET =

∀k ∈ [K ′], T ∈ T ,
∑

`∈[k],h∈[H]

‖T (·|x`h, a`h)− T?(·|x`h, a`h)‖21 ≤ 8 log(K ′|T |/δ) + 4
∑
`,h

log
T?(x̃

`
h|x`h, a`h)

T (x̃`h|x`h, a`h)


EΘ =

∀k ∈ [K ′], O ∈ Θ,
∑

`∈[k],h∈[H]

‖O(·|x`h)−O?(·|x`h)‖21 ≤ 8 log(K ′|Θ|/δ) + 4
∑
`,h

log
O?(y

`
h|x`h)

O(y`h|x`h)


The intersection of the above two is defined as ET ,Θ = ET ∩ EΘ. Finally, let EFre denote the event that,for all k ∈ [K ′] and
h ∈ [H], with π̃` = π̂` ◦h Unif(A),∑

`∈[k−1]

Eπ̃`

[
‖T?(·|xh)− T̂k(·|xh, ah)‖21 + ‖O?(·|xh, ah)− Ôk(·|xh)‖21

]
(204)

≤ 32 log (K ′H|T ×Θ|/δ) + 2
∑

`∈[k−1]

‖T?(·|x`h, a`h)− T̂k(·|x`h, a`h)‖21 + ‖O?(·|x`h)− Ôk(·|x`h)‖21. (205)

Lemma E.2. P (ET ) ≥ 1− δ.

Proof. See Appendix E.4.

Lemma E.3. P (EΘ) ≥ 1− δ.

Proof. The proof is identical to that of Lemma E.2, except that one replaces T with Θ, T? with O?, and the sample pairs
x̃`h, x

`
h, a

`
h with y`h, x

`
h.

Lemma E.4. P (EFre) ≥ 1− δ.
4Indeed, jumping straight to total variation bounds can lead to worse sample complexity bounds in the tabular case, which is why we

opt for a more refined α-vector analysis for Theorem 4.2
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Proof. Fix T ∈ T and O ∈ Θ. For convenience, define

ε(x, a) = ‖T?(·|x, a)− T (·|x, a)‖1 + ‖O?(·|x)−O(·|x)‖1. (206)

Then, consider the stochastic process given by

Z` = ε(x`h, a
`
h)

It is easy to see that Z` − Eπ̃`
[Z`] is a martingale difference sequence with |Z`| ≤ 8 =: R since x`h, a

`
h are drawn from the

exploration policy π̃`. By Theorem 1 of (Beygelzimer et al., 2011), with probability at least 1− δ, for all k ∈ [K],∑
`∈[k]

Eπ̃`
[Z`]− Z` ≤

1

2R

∑
`∈[k]

var
π̃`

(Z`) + 2R log(1/δ) (207)

where varπ̃`
(Z`) = Eπ̃`

(Z` − Eπ̃`
[Z`])

2. Then, note that

var
π̃`

(Z`) ≤ Eπ̃`

[
Z2
`

]
≤ REπ̃`

Z`

since 0 ≤ Z` ≤ R. Applying this inequality and then rearranging, we have∑
`∈[k]

Eπ̃`
[Z`] ≤ 2

∑
`∈[k]

Z` + 4R log(1/δ)

Applying the definition of Z` and taking the union bound for all h ∈ [H], k ∈ [K ′], T ∈ T and O ∈ Θ gives the result with
R = 8.

E.2. Consequences of concentration

Lemma E.5. Assume that the events ET ,Θ and EFre hold. For all k ∈ [K ′], T? ∈ Tk and O? ∈ Θk.

Proof. Note that from ET ,Θ, it holds that for all k ∈ [K ′] and T ∈ T and O ∈ Θ,∑
`∈[k−1],h

log T (x̃`h|x`h, a`h)− 2 log(K ′|T |/δ) ≤
∑

`∈[k−1],h

log T?(x̃
`
h|x`h, a`h) (208)

and ∑
`∈[k−1],h

logO(y`h|x`h)− 2 log(K ′|Θ|/δ) ≤
∑

`∈[k−1],h

logO?(y
`
h|x`h) (209)

Given the definitions of βT and βΘ, the result is immediate.

Lemma E.6. Assume that the events ET ,Θ and EFre hold. Then, for all k ∈ [K ′] and h ∈ [H], with π̃` = π̂` ◦h Unif(A),∑
`∈[k−1]

Eπ̃`

[
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖21 + ‖O?(·|xh)− Ôk(·|xh)‖21

]
≤ 32 log(K ′H|T ×Θ|/δ) + 16 (βΘ + βT )

Proof. From EFre. Fix h ∈ [H] and k ∈ [K ′]. Then,∑
`

Eπ̃`

[
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖21 + ‖O?(·|xh)− Ôk(·|xh)‖21

]
(210)

≤ 32 log(K ′H|T ×Θ|/δ) + 2
∑
`

‖T?(·|x`h, a`h)− T̂k(·|x`h, a`h)‖21 + ‖O?(·|x`h)− Ôk(·|x`h)‖21 (211)
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Then, using ET ,Θ, ∑
`

‖O?(·|x`h)− Ôk(·|x`h)‖21 ≤
∑
`,h

‖O?(·|x`h)− Ôk(·|x`h)‖21 (212)

≤ 8 log(K ′|Θ|/δ) + 4
∑
`,h

log
O?(y

`
h|x`h)

Ôk(y`h|x`h)
(213)

≤ 16 log(K ′|Θ|/δ) (214)

where the last inequality uses the fact that Ôk ∈ Θk and maxO∈Θk

∑
`,h logO(y`h|x`h) ≥

∑
`,h logO?(y

`
h|x`h) since

O? ∈ Θk. The same can be done for T̂k and Tk. Then the prior display can be bounded as∑
`

Eπ̃`

[
‖T?(·|xh, ah)− T (·|xh, ah)‖21 + ‖O?(·|xh)−O(·|xh)‖21

]
(215)

≤ 32 log(K ′H|T ×Θ|/δ) + 32 (log(K ′|Θ|/δ) + log(K ′|T |/δ)) (216)
= 32 log(K ′H|T ×Θ|/δ) + 16 (βΘ + βT ) . (217)

E.3. Final steps

The final steps of the proof follow a classic optimism analysis. We let v̂k denote the value function of the POMDP under the
model transition function T̂k and emission function Ôk (selected optimistically in the algorithm).

The instantaneous regret for k ∈ [K ′] is bounded as

v(π?)− v(π̂k) ≤ v̂k(π̂k)− v(π̂k) (218)

≤ H
∑
h

Eπ̂k
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖1 + ‖O?(·|xh)− Ôk(·|xh)‖1 (219)

where the second line follows from the POMDP Simulation Lemma (Lemma E.1). Next, leveraging the low rank MDP
assumption, define the following quantities:

ε(T,O, x, a) := ‖T (·|x, a)− T?(·|x, a)‖1 + ‖O(·|x)−O?(·|x)‖1 (220)
Uh(π̂k) := Exh−1,ah−1π̂k

[φ(xh−1, ah−1)] (221)

Wh(T,O) =

∫
xh

ψ?(xh) · sup
ah

ε(T,O, xh, ah) · dxh (222)

Σk,h := λI +
∑

`∈[k−1]

Uh(π̂`)Uh(π̂`)
> (223)

for some λ > 0 to be determined later. For h− 1 = 0, we can take Uh to be a fixed indicator and Wh to also be an indicator
with a non-zero value of Ex1∼ρ supa ε(T,O, x1, a). The algorithm does not need to use the vector functions Uh or Wh

or the covariance matrix Σk,h. Only the analysis uses them. Then, for a fixed h ∈ [H], let π̃` = π̂` ◦h Unif(A) be the
exploration policy used in round ` for timestep h. Then, letting τh denote the concatenation of (τh−1, ah−1, yh) as usual,

Eπ̂k
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖1 + ‖O?(·|xh)− Ôk(·|xh)‖1 (224)

= Exh−1,ah−1,τh−1∼π̂k

〈
φ?(xh−1, ah−1),

∫
yh,xh,ah

ψ?(xh)O?(yh|xh)π̂k(ah|τh)ε(T̂k, Ôk, xh, ah) · d(yh, xh, ah)

〉
(225)

≤ Exh−1,ah−1∼π̂k

〈
φ?(xh−1, ah−1),

∫
yh,xh

ψ?(xh)O?(yh|xh) sup
ah

ε(T̂k, Ôk, xh, ah) · d(yh, xh)

〉
(226)

≤ ‖Uh(π̂k)‖Σ−1
k,h
·
∥∥∥∥∫

xh

ψ?(xh) sup
ah

ε(T̂k, Ôk, xh, ah) · dxh
∥∥∥∥

Σk,h

(227)

= ‖Uh(π̂k)‖Σ−1
k,h
· ‖Wh(T̂k, Ôk)‖Σk,h

. (228)
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The first line uses the definition of the low-rank latent transition to decompose the expectation over elements at step h.
The first inequality replaces the distribution over ah with a sup, which is valid because φ?(xh−1, ah−1)>ψ?(xh) ≥ 0 is a
probability. The second inequality applies the Cauchy-Schwarz inequality with the definition of Uh and the last line uses the
definition of Wh. For the right-hand factor,

‖Wh(T̂k, Ôk)‖2Σk,h
= λ‖Wh(T̂k, Ôk)‖22 +

∑
`∈[k−1]

〈
Uh(π̂`),Wh(T̂k, Ôk)

〉2

(229)

Using the normalization condition on ψ?, we have

λ‖Wh(T̂k, Ôk)‖22 ≤ 8λd (230)

Also, ∑
`∈[k−1]

〈
Uh(π̂`),Wh(T̂k, Ôk)

〉2

(231)

=
∑

`∈[k−1]

(
Exh∼π̂`

sup
ah

ε(T̂k, Ôk, xh, ah)

)2

(232)

≤ 2
∑

`∈[k−1]

Exh∼π̂`
sup
ah

[
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖21 + ‖O?(·|xh)− Ôk(·|xh)‖21

]
(233)

≤ 2A
∑

`∈[k−1]

Exh,ah∼π̃`

[
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖21 + ‖O?(·|xh)− Ôk(·|xh)‖21

]
. (234)

The first inequality above applies Jensen’s inequality and the fact that (a+ b)2 ≤ 2(a2 + b2). The second inequality upper
bounds the supah with a sum to convert the expression to a uniform distribution over ah, which is exactly the distribution
under the exploration policy π̃`. Therefore, leveraging Lemma E.6 under EΘ, ET , and EFre,

‖Wh(T̂k, Ôk)‖2Σk,h
≤ 8λd+ 64A (log (K ′H|T ×Θ|/δ) + βT + βΘ) (235)

Then,

Eπ̂k
‖T?(·|xh, ah)− T̂k(·|xh, ah)‖1 + ‖O?(·|xh)− Ôk(·|xh)‖1 (236)

≤ min
{

4,
√

64A‖Uh(π̂k)‖Σ−1
k,h

√
λd+ βT + βΘ + log(K ′H|T ×Θ|/δ)

}
(237)

Let βλ := λd+ βT + βΘ + log(K ′H|T ×Θ|/δ) for shorthand. Then, the total sub-optimality of the proposed policies
π̂1, . . . , π̂K is bounded as ∑

k∈[K′]

v(π?)− v(π̂k) ≤ H
∑
k,h

(
4 ∧ ‖Uh(π̂k)‖Σ−1

k,h
·
√

64βλA
)

(238)

≤ H
∑
h

√
64βλAK

∑
k

(
1 ∧ ‖Uh(π̂k)‖2

Σ−1
k,h

)
(239)

≤ H2
√

64β1/dAKd log(1 +K ′) (240)

where the last inequality applies the elliptical potential lemma (Lemma F.8) with the setting λ = 1/d.

E.4. Proof of Lemma E.2

Proof. The proof follows a similar approach as Agarwal et al. (2020). Fix k ∈ [K ′]. In contrast to the the rest of the paper,
in this proof only we use τ̄ ` to denote the data collected, since these differ from the histories in the usual sense as a result of
the exploration happening over H rounds per epoch. In particular, we define τ̄ ` =

{
x`h, a

`
h, y

`
h, x̃

`
h

}
h=∈[H]

where we recall

in the algorithm that x̃`h is the next-state sampled by the exploration policy for step h.
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Given the full trajectories τ̄1, . . . , τ̄k, define the tangent dataset sampled independently as x̂`h+1 ∼ T?(·|x`h, a`h) for ` ∈ [k],
which has a distribution completely determined by the history. Let l : X 2×A → R be an arbitrary measurable loss function.
Define L =

∑
`,h l(x

`
h, a

`
h, x̃

`
h) and L̂ =

∑
`,h l(x

`
h, a

`
h, x̂

`
h). For convenience, let us define τ̄ττ `h to be the concatenated

sequence (τ̄1:`−1, τ̄ `h, a
`
h).

Consider the function:

exp
(
L− logE

[
exp(L̂) | τ̄ττkH

])
=

exp(L)

E
[
exp(L̂) | τ̄ττkH

]
=

exp(L)∏
`,h E

[
exp l(x`h, a

`
h, x̂

`
h) | τ̄ττ `h

]
where the second equality follows from the fact that the tangent observations are independent given the history of latent
states. Then,

E
[
exp

(
L− logE

[
exp(L̂) | τ̄ττkh

])]
= E

[
exp(L)∏

`,h E
[
exp l(x`h, a

`
h, x̂

`
h) | τ̄ττ `h

]] (241)

= E

[ ∏
`,h exp l(x`h, a

`
h, x̃

`
h)∏

`,h E
[
exp l(x`h, a

`
h, x̂

`
h) | τ̄ττ `h

]] (242)

= E

[ ∏
`∈[k],h∈[H−1] exp

(
l(x`h, a

`
h, x̃

`
h)
)∏

`∈[k],h∈[H−1] E
[
exp l(x`h, a

`
h, x̂

`
h+1) | τ̄ττ `h

] · E [exp
(
l(xkH , a

k
H , x̃

k
H)
)
| τ̄ττkH

]
E
[
exp

(
l(xkH , a

k
H , x̂

k
H)
)
| τ̄ττkH

]]
(243)

= E

[ ∏
`∈[k],h∈[H−1] exp

(
l(x`h, a

`
h, x̃

`
h+1)

)∏
`∈[k],h∈[H−1] E

[
exp l(x`h, a

`
h, x̂

`
h+1) | τ̄ττ `h

]] (244)

= . . . (245)
= 1 (246)

where the cancellation is repeated for all ` ∈ [k] and h ∈ [H]. Applying Markov’s inequality ensures that

P
(
L− logE

[
exp(L̂) | τ̄ττkH

]
≥ z
)
≤

E
[
exp

(
L− logE

[
exp(L̂) | τ̄ττkH

])]
ez

. (247)

Taking z = log(1/δ) guarantees that

L− logE
[
exp(L̂) | τ̄ττkH

]
≤ log(1/δ) (248)

with probability at least 1− δ.

We will define the loss function as `(x, a, x′) = log
√

T (x′|x,a)
T?(x′|x,a) for some T ∈ T . One can then relate the above loss

function to the total variation distance:∑
`∈[k],h∈[H]

‖T?(·|x`h, a`h)− T (·|x`h, a`h)‖21 =
∑
`,h

(∫
x′∈X

|T?(x′|x`h, a`h)− T (x′|x`h, a`h)|dx′
)2

(249)

≤ 4
∑
`,h

∫
x′

(√
T?(x′|x`h, a`h)−

√
T (x′|x`h, a`h)

)2

dx′ (250)

= 8
∑
`,h

Ex′∼T?(·|x`
h,a

`
h)

[
1−

√
T (x′|x`h, a`h)/T?(x′|x`h, a`h)

]
(251)

≤ −8
∑
`,h

logEx′∼T?(·|x`
h,a

`
h)

√
T (x′|x`h, a`h)

T?(x′|x`h, a`h)
(252)
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where the first inequality is from Cauchy-Schwarz and the second uses the fact that log(1 + a) ≤ a for a > −1. Observe
that we have

− logE
[
exp(L̂) | τ̄ττkH

]
= − logE

∏
`,h

exp

(
log

(√
T (x̂`h+1|x`h, a`h)

T?(x̂`h+1|x`h, a`h)

))
| τ̄ττkH

 (253)

= −
∑
`,h

log

(
Ex′∼T?(·|x`

h,a
`
h)

√
T (x′|x`h, a`h)

T?(x′|x`h, a`h)

)
(254)

Combining this with the concentration inequality from earlier, we conclude that∑
`,h

‖T?(·|x`h, a`h)− T (·|x`h, a`h)‖21 ≤ −8 logE
[
exp(L̂) | xkH

]
(255)

≤ −8 (L− log(1/δ)) (256)

= −8

1

2

∑
`,h

log

(
T (x`h+1|x`h, a`h)

T?(x`h+1|x`h, a`h)

)
− log(1/δ)

 (257)

with probability at least 1− δ for a fixed T . Taking the union bound over all T ∈ T and all k ∈ [K ′],

∑
`∈[k],h∈[H]

‖T?(·|x`h, a`h)− T (·|x`h, a`h)‖21 ≤ 8 log(K ′|T |/δ) + 4
∑
`,h

log
T?(x

`
h+1|x`h, a`h)

T (x`h+1, x
`
h, a

`
h)

(258)

with probability at least 1− δ.

F. Auxiliary Lemmas
Here state and prove a number of helpful auxiliary results for the main theorems.

F.1. Simulation lemma

Lemma E.1 (Simulation Lemma). Consider a POMDP model with transition matrix T̂ , emission matrix Ô, and reward
function r. Denote the value function and measure under this POMDP by v̂ and P̂ respectively. Then, for any history-
dependent policy π,

‖P̂π − Pπ‖1 ≤ Eπ
∑
h∈[H]

‖O?(·|xh)− Ô(·|xh)‖1 + ‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1.

Furthermore,

|v(π)− v̂(π)| ≤ HEπ
∑
h∈[H]

‖O?(·|xh)− Ô(·|xh)‖1 + ‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1,

where Eπ denotes the expectation following policy π under the true modelM.

Proof. Note that

|v(π)− v̂(π)| ≤ H‖Pπ − P̂π‖1

where Pπ denotes the measure over trajectories τ̄ = (x1, y1, a1, . . . , xH , yH , aH) including the latent states under the true
model with T and O and policy π. Similarly P̂π denotes the same measure but under the model with T̂ and Ô. With notation
slightly abused, we also use Pπ(τ̄) to denote the density. This density decomposes as

Pπ(τ̄) = ρ(x1)

 ∏
h∈[H−1]

T?(xh+1|xh, ah)O?(yh|xh)π(ah|τh)

O?(yH |xH)π(aH |τH),
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where we recall that τh = (y1:h, a1:h−1) is the partial history. P̂π is analogously defined. Consider for now a fixed τ̄ . To
bound the total variation distance, we are interested in bounding the differences between Pπ(τ̄) and P̂π(τ̄). For shorthand,
we will define the following quantities:

Bh = ρ(x1)O?(y1|x1)
∏

t∈[h−1]

T?(xt+1|xt, at)O?(yt+1|xt+1),

π̄h =
∏
t∈[h]

π(at|τt).

Note that we have the following recursion:

Bh = O?(yh|xh)T?(xh|xh−1, ah−1)Bh−1 (259)

where B1 = ρ(x1)O?(y1|x1). We also define B̂h analogously with Ô and T̂ . To prove Lemma E.1, we will recursively
apply the following bound.

Lemma F.1. The following inequality holds:∫
xh,yh,ah

π̄h|Bh − B̂h| · d(xh, yh, ah) ≤ π̄h−1

∫
xh

T?(xh|xh−1, ah−1)Bh−1 · ‖O?(·|xh)− Ô(·|xh)‖1 · dxh (260)

+ π̄h−1Bh−1 · ‖T?(·|xh−1, ah−1)− T̂ (·|xh−1, ah−1)‖1 (261)

+ π̄h−1|Bh−1 − B̂h−1| (262)

Summing over all possible latent-augmented trajectories, this implies that we have∫
τ̄

|Pπ(τ̄)− Pπ(τ̄)| · dτ̄ =

∫
τ̄

π̄H |BH − B̂H | · dτ̄ (263)

≤
∑
h

∫
xh

Pπ(xh) · ‖O?(·|xh)− Ô(·|xh)‖1 · dxh (264)

+
∑

h∈[H−1]

∫
xh,ah

Pπ(xh, ah) · ‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1 (265)

= Eπ
∑
h

‖O?(·|xh)− Ô(·|xh)‖1 + Eπ
∑

h∈[H−1]

‖T?(·|xh, ah)− T̂ (·|xh, ah)‖1. (266)

F.1.1. PROOF OF LEMMA F.1

Lemma F.1. The following inequality holds:∫
xh,yh,ah

π̄h|Bh − B̂h| · d(xh, yh, ah) ≤ π̄h−1

∫
xh

T?(xh|xh−1, ah−1)Bh−1 · ‖O?(·|xh)− Ô(·|xh)‖1 · dxh (260)

+ π̄h−1Bh−1 · ‖T?(·|xh−1, ah−1)− T̂ (·|xh−1, ah−1)‖1 (261)

+ π̄h−1|Bh−1 − B̂h−1| (262)

Proof. We first average out ah and then apply the triangle inequality to bound the quantity in terms of the difference in
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emission matrices ‖O(·|xh)− Ô(·|xh)‖1:∫
xh,yh,ah

π̄h|Bh − B̂h| · d(xh, yh, ah) (267)

= π̄h−1

∫
xh,yh

|Bh − B̂h| · d(xh, yh) (268)

= π̄h−1

∫
xh,yh

|T?(xh|xh−1, ah−1)O?(yh|xh)Bh−1 − T̂ (xh|xh−1, ah−1)Ô(yh|xh)B̂h−1| · d(xh, yh) (269)

≤ π̄h−1

∫
xh,yh

T?(xh|xh−1, ah−1)Bh−1 · |O?(yh|xh)− Ô(yh|xh)| · d(xh, yh) (270)

+ π̄h−1

∫
xh,yh

Ô(yh|xh)|T?(xh|xh−1, ah−1)Bh−1 − T̂ (xh|xh−1, ah−1)B̂h−1| · d(xh, yh) (271)

= π̄h−1

∫
xh

T?(xh|xh−1, ah−1)Bh−1 · ‖O?(·|xh)− Ô(·|xh)‖1 · d(xh)︸ ︷︷ ︸
(I)

(272)

+ π̄h−1

∫
xh

|T?(xh|xh−1, ah−1)Bh−1 − T̂ (xh|xh−1, ah−1)B̂h−1| · d(xh). (273)

Now, we can also apply the triangle inequality to the last term on the right side to bound the quantity in terms of the
difference in transition matrices:∫

xh,yh,ah

π̄h|Bh − B̂h| · d(xh, yh, ah) ≤ (I) + π̄h−1Bh−1

∫
xh

|T?(xh|xh−1, ah−1)− T̂ (xh|xh−1, ah−1)| · d(xh) (274)

+ π̄h−1

∫
xh

T̂ (xh|xh−1, ah−1)|Bh−1 − B̂h−1| · d(xh) (275)

≤ (I) + π̄h−1Bh−1 · ‖T (·|xh−1, ah−1)− T̂ (·|xh−1, ah−1)‖1 (276)

+ π̄h−1|Bh−1 − B̂h−1|. (277)

This concludes the proof.

F.2. Concentration inequalities

Lemma F.2 (Hoeffding’s inequality). Let Z1, . . . , Zn be a sequence of independent random variables with Zi ∈ [a, b] for
all i for −∞ < a ≤ b <∞. Then

P

(
1

n

∑
i

Zi − E[Zi] ≥ (b− a)

√
log(1/δ)

n

)
≤ δ.

Lemma F.3 (Bernstein’s inequality). Let Z1, . . . , Zn be a sequence of independent random variables with Zi ∈ [0, 1] and
variance var(Zi) = σ2 and mean E[Zi] = µ for all i. Then, with probability at least 1− δ,

1

n

∑
i

Zi − E[Zi] ≤
log(1/δ)

3n
+

√
2σ2 log(1/δ)

n
.

Furthermore, this implies that, for all c ≥ 1,

1

n

∑
i

Zi − µ ≤
log(1/δ)

3n
+

√
2µ log(1/δ)

n

≤ µ

2c
+

2c log(1/δ)

n
.

Proof. The first statement is simply the original statement of Bernstein’s inequality. The second uses the fact that σ2 ≤ µ
for variables in [0, 1]. The last one uses the AM-GM inequality.
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Lemma F.4 (Azuma-Hoeffding). Let Z1, . . . , Zn be a martingale difference sequence with |Zi| ≤ G for all i. Then, with
probability at least 1− δ, ∑

i

Zi ≤ 4G
√
n log(1/δ). (278)

F.3. Pigeonhole lemmas

Lemma F.5 (Pigeonhole Principle). The following inequalities hold:

∑
k∈[K],h∈[H]

√
1

max{1, nk(xkh)}
≤ HX + 3

√
HXK (279)

and

∑
k∈[K],h∈[H]

√
1

max{1, nk(xkh, a
k
h)}
≤ HXA+ 3

√
HXAK. (280)

Proof. We prove only the first as the second is equivalent up to summations over the actions. Note that

∑
k∈[K],h∈[H]

√
1

max{1, nk(xkh)}
=
∑
x

K∑
k=1

mk(x)√
max{1, nk(x)}

(281)

≤ XH +
∑
x

K∑
k=1

mk(x)√
max{H,nk(x)}

, (282)

where mk(x) =
∑
h∈[H] 1{xkh = x} counts the number of occurrences of x in a single round k. The inequality uses the fact

that, for any x, the summand can contribute at most H to the sum (because mk(x) is bounded by H) before nk(x) has value
at least H . Now we use Lemma F.6 (which is adapted from Lemma 19 of (Auer et al., 2008)) to bound the second term:

∑
k∈[K],h∈[H]

√
1

max{H,nk(xkh)}
≤ XH + 3

∑
x

√
nK(x) (283)

≤ XH + 3
√
HXK, (284)

where the last line follows from the Cauchy-Schwarz inequality along with the fact that
∑
x nK(x) = KH .

Lemma F.6 (Adapted from Auer et al. (2008)). Let z1, . . . , zn ∈ [0, H] be an arbitrary sequence and let Zk =

max{H,
∑k
k=1 zk}. Then, ∑

k∈[n]

zk√
Zk−1

≤ 3
√
Zn. (285)

Proof. Consider the case where n = 1. Then, Z0 = H . Furthermore,∑
k∈[n]

zk√
Zk − 1

=
z1√
H
≤
√
H ≤ 3

√
Z1 (286)

By induction on the base case, we have ∑
k∈[n]

zk√
Zk−1

= 3
√
Zn−1 +

zn√
Zn−1

(287)
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3
√
Zn−1 +

zn√
Zn−1

)2

= 9Zn−1 + 6zn +
z2
n

Zn−1
(288)

≤ 9Zn−1 + 7zn (289)
≤ 9Zn (290)

Therefore, by taking the square root, ∑
k∈[n]

zk√
Zk−1

≤ 3
√
Zn (291)

Lemma F.7. The following inequality holds:∑
k∈[K],h∈[H]

1

max
{

1, nk(xkh, a
k
h)
} ≤ HXA(1 + logK). (292)

Proof. First note that since nk(x, a) is updated each episode, we immediately have

∑
k∈[K],h∈[H]

1

max
{

1, nk(xkh)
} ≤ HXA dK/XAe∑

i=1

1

i
(293)

≤ HXA
K∑
i=1

1

i
(294)

since we assume that X,A ≥ 1. Then,

∑
i∈[K]

1

i
≤ 1 +

∫ K

1

dx

x
(295)

= 1 + logK. (296)

Lemma F.8 (Lattimore & Szepesvári (2020)). Let Σk = λI +
∑
`∈[k−1] φ`φ

>
` and ‖φ`‖ ≤ 1 uniformly. Then,

∑
k∈[K]

(
1 ∧ ‖φk‖2Σ−1

k

)
≤ 2d log

(
dλ+K

dλ

)
. (297)


	Additional Motivating Applications
	Value Functions and Alpha Vector Representations
	Full Statement and Proof of Theorem 4.2
	Full statement of result of Theorem 4.2
	High-probability events
	Optimism via reward bonuses
	Proof of the theorem
	Supporting results
	Proof of Lemma C.8
	Proof of Lemma C.9
	Helpers

	First steps towards function approximation
	Proof of Proposition C.12


	Proof of Lower Bound Theorem 5.1
	Construction of instance class
	Selection of emission function
	Separability condition
	Fano's inequality application

	Proof of Theorem 6.3
	High-probability events
	Consequences of concentration
	Final steps
	Proof of Lemma E.2

	Auxiliary Lemmas
	Simulation lemma
	Proof of Lemma F.1

	Concentration inequalities
	Pigeonhole lemmas


